What mass of nitrogen is contained
in a10 ft3 vessel at a pressure of 840atm
and 820°R? Make a computation by
using ideal gas equation.
 a. 194lb
 b. 214lb
 c. 394 lb
 d. 413lb
formula: m=pV /RT

1 Answer

Answer :

394 lb

Related questions

Description : The flow energy of 5 ft3 of a fluid passing a boundary to a system is 80,000 ft-lb. Determine the pressure at this point.  a. 222 psi  b. 333 psi  c. 444 psi  d. 111 psi formula: Ef= pV

Last Answer : 111 psi

Description : If air is at pressure, p, of 3200 lbf/ft2 , and at a temperature, T, of 800 ˚R, what is the specific volume, v? (R=5303 ft-lbf/lbm-˚R, and air can be modeled as an ideal gas.)  A.9.8 ft^3/lbm  B.11.2 ft^3/lbm  C.13.33 ft^3/lbm  D.14.2 ft^3/lbm Formula: pv = RT v = RT / p

Last Answer : 13.33 ft^3/lbm

Description : In the equation Pv = RT, the constant of proportionality R is known as ______.  A. Universal gas constant  B. Gas constant  C. Ideal gas factor  D. Gas index

Last Answer : Gas constant

Description : 3.0 lbm of air are contained at 25 psia and 100 ˚F. Given that Rair = 53.35 ft-lbf/lbm- ˚F, what is the volume of the container?  A.10.7 ft^3  B.14.7 ft^3  C.15 ft^3  D.24.9 ft^3 Formula: use the ideal gas law pV = mRT T = (100 +460) ˚R V = mRT/p

Last Answer : 24.9 ft^3

Description : The compressibility factor, x, is used for predicting the behavior of nonideal gases. How is the compressibility ty factor defined relative to an ideal gas? (subscript c refers to critical value)  A. ... compressibility factor, x, is an dimensionless constant given by pV=zRT. Therefore z = pV / RT

Last Answer : z = pV/ RT

Description : Find ∫ for steam at 100 psia and 600°F.If h = 1329.6 and v = 6.216  a. 1214 Btu / lb  b. 1234 Btu /lb  c. 1342 Btu / lb  d. 1324 Btu /lb formula: ∫ = h– pv/ J

Last Answer : 1214Btu / lb

Description : A vertical column of water will be supported to what height by standard atmospheric pressure. If the Y w = 62.4lb/ft3 po = 14.7 psi.  a. 44.9 ft  b. 33.9 ft  c. 22.9 ft  d. 55.9 ft formula: ho= po/Yw

Last Answer : 33.9 ft

Description : Which of the following is the Ideal gas law (equation)?  A. V/T = K  B. V= k*(1/P)  C. P1/T1 = P2/T2  D. PV = nRT

Last Answer : PV = nRT

Description : Steam at 1000 lbf/ft^2 pressure and 300˚R has specific volume of 6.5 ft^3/lbm and a specific enthalpy of 9800 lbf-ft/lbm. Find the internal energy per pound mass of steam.  A.2500 lbf-ft/lbm  B.3300 lbf-ft/lbm  C.5400 lbf-ft/lbm  D.6900 lbf-ft/lbm Formula: h= u+ pV u= h– pV

Last Answer : 3300 lbf-ft/lbm

Description : In the above problem, compute for the mass. (Formula: m = p1V1 / RT1)  a. 0.2148 lb  b. 0.2134 lb  c. 0.1248 lb  d. None of the above

Last Answer : 0.2148 lb

Description : A vessel with a volume of cubic meter contains liquid water and water vapor ion equilibrium at 600 kPa. The liquid water has mass of1kg. Using the steam table, calculate the mass of the water vapor.  A. 0.99kg  B. 1.57 kg  C ... / kg vg = 0.3157 m^3 / kg Vtot = mƒ vƒ + mg vg mg = (tot-mƒ vƒ) / vg

Last Answer : 3.16 kg

Description : Assuming compression is according to the Law PV = C, Calculate the initial volume of the gas at a pressure of 2 bars w/c will occupy a volume of 6m³ when it is compressed to a pressure of 42 Bars.  a) 130m³  b) 136m³  c) 120m³  d) 126m³ Formula: P1V1/T1 =P2V2/T2

Last Answer : 126m³

Description : What is the equation for the work done by a constant temperature system?  A. W = mRTln(V2-V1)  B. W = mR( T2-T1 ) ln( V2/V1)  C. W = mRTln (V2/V1)  D. W = RT ln (V2/V1) Formula : W=∫ pdV lim1,2 ∫ = mRT / V

Last Answer : W = mRTln (V2/V1)

Description : A certain gas, with cp = 0.529Btu/ lb. °Rand R = 96.2ft.lb/lb. °R, expands from 5 cu ft and 80°F to 15 cu ft while the pressure remains constant at 15.5psia. Compute for T2.  a.1520°R  b. 1620°R  c. 1720°R  d. 1820°R formula: T2= T1V2/V1

Last Answer : 1620°R

Description : A certain gas, with cp = 0.529Btu/lb.°R and R = 96.2 ft.lb/lb.°R, expands from 5 cu ft and 80°F to 15 cu ft while the pressure remains constant at 15.5 psia. Compute for T2. (Formula: T2= T1V2/V1)  a. 460°R  b. 270°R  c. 1620 °R  d. None of the above

Last Answer : 1620 °R

Description : Which of the following statements is TRUE for an ideal gas, but not for a real gas?  A. PV = nRT  B. An increase in temperature causes an increase in the kinetic energy of the gas  C. The ... same as the volume of the gas as a whole  D. No attractive forces exists between the molecule of a gas

Last Answer : PV = nRT

Description : The pressure exerted by an ideal gas is __________ of the kinetic energy of all the molecules contained in a unit volume of gas.  A.one-half  B.one-third  C.two-third  D.three-fourth

Last Answer : Answer: C

Description : General gas equation is  (a) PV=nRT  (b) PV=mRT  (d) PV = C  (c) PV=KiRT  (e) Cp-Cv = Wj

Last Answer : Answer : b

Description : Helium ( R= 0.4698 BTU/lbm-˚R ) is compressed isothermally from 14.7 psia and 68 ˚F. The compression ratio is 1:4. Calculate the work done by the gas.  A. –1454 BTU/lbm  B. -364 BTU/lbm  C.-187BTU/lbm  D.46.7 BTU/lbm Formula: W = RT ln (V2/V1)

Last Answer : -364 BTU/lbm

Description : Find the change in internal energy of 5 lb. of oxygen gas when the temperature changes from 100 ˚F to 120 ˚F. CV = 0.157 BTU/lbm-˚R  A.14.7 BTU  B.15.7 BTU  C. 16.8 BTU  D. 15.9 BTU Formula: U= mcv T

Last Answer : 15.7 BTU

Description : A 10m^3 vessel initially contains 5 m^3 of liquid water and 5 m^3 of saturated water vapor at 100 kPa. Calculate the internal energy of the system using the steam table.  A. 5 x10^5 kJ  B. 8x10^5 kJ  C. 1 ... 3 kJ/kg ug= 2506kJ/kg formula: Mvap = V vap/vg M liq = Vliq/ vƒ u =uƒM liq + ug M vap

Last Answer : 2 x10^6 kJ

Description : Calculate: a. Mass flow rate in lb/hr. b. The velocity at section 2 in fps  a. 800,000lb/hr;625ft/s  b. 900,000lb/hr;625 ft/s  c. 888,000lb/hr;269 ft/s  d. 700,000lb/hr;269 ft/s m = A1V!/V1

Last Answer : 900,000 lb/hr;625 ft/s

Description : The temperatures of the ideal gas temperature scale are measured by using a ______.  A. Constant-volume gas thermometer  B. Constant-mass gas thermometer  C. Constant-temperature gas thermometer  D. Constant-pressure gas thermometer

Last Answer : Constant-volume gas thermometer

Description : A 1-kg steam-water mixture at 1.0 MPa is contained in an inflexible tank. Heat is added until the pressure rises to 3.5 MPa and the temperature to 400°. Determine the heat added.  a) 1378.7 kJ  b) 1348.5 kJ  c) 1278,7 kJ  d) 1246,5 kJ Formula: Q = (h2 – p2v2) –(h1 –p1v1)

Last Answer : 1378.7 kJ

Description : A problem Drum ( 3 ft. diameter ; 6 ft. height ) is field with a fluid whose density is 50 lb/ft^3. Determine the total volume of the fluid.  A. 42.41 ft^3  B.44.35 ft^3  C.45.63 ft^3  D.41.23 ft^3 Formula: Vf = (pi d^2 h) / 4

Last Answer : 42.41 ft^3

Description : According to Avogadro's law  A. the product of the gas constant and the molecular mass of an ideal gas is constant  B. the sum of partial pressure of the mixture of two gases is sum of the ... all gases, at the same temperature and pressure, contain equal number of molecules  D. all of the above

Last Answer : Answer: C

Description : Which of the following processes are thermodynamically reversible  (a) throttling  (b) free expansion  (c) constant volume and constant pressure  (d) hyperbolic and pV = C  (e) isothermal and adiabatic.

Last Answer : Answer : e

Description : If value of n is infinitely large in a polytropic process pV” = C, then the process is known as constant  (a) volume  (b) pressure  (c) temperature  (d) enthalpy  (e) entropy

Last Answer : Answer : a

Description : Considering one mole of any gas, the equation of state of ideal gases is simply the ______ law.  A. Gay-Lussac law  B. Dulong and Petit  C. Avogadro’s  D. Henry’s

Last Answer : Avogadro’s

Description : The speed at which a liquid escapes from a vessel through an orifice is given by _________.  a. Archimedes Principle  b. Evangelista’s Law  c. Torricelli’s Theorem  d. Bernoulli’s Equation

Last Answer : Torricelli’s Theorem

Description : Gas is enclosed in a cylinder with a weighted piston as the stop boundary. The gas is heated and expands from a volume of 0.04 m^3 to 0.10 m^3 at a constant pressure of 200kPa.Calculate the work done by the system.  A. 8 kJ  B. 10 kJ  C.12 kJ  D.14 kJ Formula: W = p(V2-V1)

Last Answer : 12 kJ

Description : Boyle’s law i.e. pV = constant is applicable to gases under  (a) all ranges of pressures  (b) only small range of pressures  (c) high range of pressures  (d) steady change of pressures  (e) atmospheric conditions.

Last Answer : Answer : b

Description : Two masses, one of the 10kg and the other unknown, are placed on a scale in a region where g = 9.67 m/sec2 . The combined weight of these two masses is 174.06 N. Find the unknown mass in kg.  a. 20 kg  b. 19 kg  c. 18 kg  d. 17 kg formula: m=Fg k / g

Last Answer : 18 kg

Description : The weight of an object is 50lb. What is its mass at standard condition?  a. 50 lbm  b. 60 lbm  c. 70 lbm  d. 80 lbm formula: m = Fgk /g

Last Answer : 50 lbm

Description : A mass of 5kg is 100m above a given datum where local g = 9.75 m/s2 . Find the gravitational force in newtons. (Formula: Fg= mg/k )  a. 48.75 N  b. 50 N  c. 45 N  d. None of the above

Last Answer : 48.75 N

Description : The heat supplied to the gaS at constant volume is (where m = Mass of gas, cv = Specific heat at constant volume, cp = Specific heat at constant pressure, T2 – T1 = Rise in temperature, and R = Gas constant)  A. mR(T2 – T1)  B. mcv(T2 – T1)  C. mcp(T2 – T1)  D. mcp(T2 + T1)

Last Answer : Answer: B

Description : Water contained in a beaker can be made to boil by passing steam through it  (a) at atmospheric pressure  (b) at a pressure below the firuosphejric pressure  (c) at a pressure greater than atmospheric pressure  (d) any pressure  (e) not possible.

Last Answer : Answer : c

Description : Which of the following gas has a minimum molecular mass?  A. Oxygen  B. Nitrogen  C. Hydrogen  D. Methane

Last Answer : Answer: C

Description : A fluid flows in a steady manner between two section in a flow line at section 1: A 1 = 1ft², V1 = 100fpm, volume1 of 4ft³/lb. at sec2: A2 = 2 ft², p= 0.20 lb/ft³ calculate the velocity at section 2.  a. 625 fpm  b. 567 fpm  c. 356 fpm  d. None of the above

Last Answer : 625 fpm

Description : To displace a cubic foot of fresh water, you need _________ force.  a. 62.4 lb  b. 9.81 lb  c. 76 lb  d. 760 lb

Last Answer : 62.4 lb

Description : The molecular number density of an ideal gas at standard temperature and pressure in cm3  a. Froude number  b. Loschmidt number  c. Mach number  d. Reynold number

Last Answer : Loschmidt number

Description : The volume of a gas under constant pressure increases or decrease with temperature.  a. Gay- Lussac’s Law  b. Ideal Gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Charles’ Law

Description : A law relating the pressure, temperature and volume of an ideal gas  a. Gay-Lussac’s Law  b. Ideal gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Ideal gas Law

Description : If the initial volume of an ideal gas is compressed to one-half its original volume and to twice its original temperature, the pressure:  a. doubles  b. halves  c. quadruples  d. triples

Last Answer : quadruples

Description : To what conditions does a gas behave like an ideal gas?  a. low temperature and low pressure  b. low temperature and high pressure  c. high temperature and low pressure  d. high temperature and high pressure

Last Answer : high temperature and low pressure

Description : An ideal gas of volume 1liter and pressure 10 bar undergoes a quasistatic adiabatic expansion until the pressure drops to 1 bar. Assume γ to be 1.4 what is the final volume?  a. 3.18 l  b. 4.18 l  c. 5.18 l  d. 6.18 l

Last Answer : 5.18 l

Description : An ideal gas at 45psig and 80ºF is heated in the close container to 130ºF. What is the final pressure?  a. 65.10 psi  b. 65.11 psi  c. 65.23 psi  d. 61.16 psi P1V1/T1= P2V2/T2;V = Constant

Last Answer : 65.23 psi

Description : An ideal gas is maintained at constant temperature. If the pressure on the gas is doubled, the volume is  a. increased fourfold  b. doubled  c. reduced by half  d. decreased by a quarter

Last Answer : reduced by half

Description : The volume of an ideal gas is directly proportional to its  a. pressure  b. Celsius temperature  c. Kelvin temperature  d. Fahrenheit temperature

Last Answer : Kelvin temperature

Description : “At constant pressure, the volume of a gas is inversely proportional to the pressure”. This is known as ______.  A. Boyle’s Law  B. Charles’s Law  C. Gay-Lussac Law  D. Ideal gas law

Last Answer : Boyle’s Law