Translational kinetic energy of molecules of an ideal gas is proportional to (where, T = absolute temperature of the gas)
(A) T
(B) √T
(C) T2
(D) 1/√T

1 Answer

Answer :

(A) T

Related questions

Description : In case of isentropic flow, the speed of sound in an ideal gas is proportional to (where, T = absolute temperature). (A) 1/√T (B) 1/T (C) √T (D) T

Last Answer : (C) √T

Description : The average kinetic energy of the molecules of an ideal gas is directly proportional to – (1) Velocity of Molecules (2) Mass of Molecules (3) Absolute temperature of the gas (4) Temperature of environment

Last Answer : (3) Absolute temperature of the gas Explanation: The average kinetic energy of gas molecules is directly proportional to absolute temperature only. This implies that all molecular motion ceases if the temperature is reduced to absolute zero.

Description : The average kinetic energy of the molecules of an ideal gas is directly proportional to (1) Velocity of Molecules (2) Mass of Molecules (3) Absolute temperature of the gas (4) Temperature of environment

Last Answer : Absolute temperature of the gas

Description : Velocity of a gas in sound is not proportional to (where, T = Absolute temperature of the gas. P = Absolute pressure of the gas. y = Ratio of specific heats (Cp/Cv) ρ = specific weight of the gas) (A) √T (B) 1/√P (C) √y (D) 1/√ρ

Last Answer : (B) 1/√P

Description : The Knudsen diffusivity is proportional to (where, T = absolute temperature) (A) √T (B) T 2 (C) T (D) T 4

Last Answer : (A) √T

Description : Kinetic energy of the molecules in terms of absolute temperature (T) is proportional to  (a) T  (b) j  (c) J2  (d) Vr  (e) 1/Vr.

Last Answer : Answer : a

Description : The ratio of thermal & electrical conductivity is same for all the metals at the same temperature; and at around room temperature, this ratio is proportional to(where, T = absolute temperature, °K) (A) T (B) 1/T (C) T2 (D) 1/T2

Last Answer : A) T

Description : The molecules of a gas moving through space with some velocity possesses what kind of energy?  A. Translational energy  B. Spin energy  C. Rotational kinetic energy  D. Sensible energy

Last Answer : Translational energy

Description : What refers to the portion of the internal energy of a system associated with the kinetic energies of the molecules?  A. Translational energy  B. Spin energy  C. Rotational kinetic energy  D. Sensible energy

Last Answer : Sensible energy

Description : In case of liquids, the binary diffusivity is proportional to (where, T = temperature) (A) T (B) √T (C) T 2 (D) 1/T

Last Answer : (A) T

Description : Rate constant 'k' and absolute temperature 'T' are related by collision theory (for bimolecular) as (A) k ∝ T 1.5 (B) k ∝ exp(-E/RT) (C) k ∝ √T (D) k ∝ T

Last Answer : (C) k ∝ √T

Description : The kinetic energy of molecules of a gas becomes zero at absolute zero temperature.  A. Agree  B. Disagree

Last Answer : Answer: A

Description : According to kinetic theory of gases, the absolute zero temperature is attained when  (a) volume of the gas is zero  (b) pressure of the gas is zero  (c) kinetic energy of the molecules is zero  (d) specific heat of gas is zero  (e) mass is zero.

Last Answer : Answer : c

Description : According to the kinetic theory, the Kelvin temperature of an ideal gas is proportional to which one of the following. Is the temperature proportional to the gas's average molecular: w) velocity x) momentum y) kinetic energy z) potential energy

Last Answer : ANSWER: Y -- KINETIC ENERGY

Description : The drying time between fixed moisture contents within the 'constant rate period' is proportional to (assuming that drying occurs from all surfaces of the solid) (where, T = thickness of the solid). (A) √T (B) T (C) T 1.5 (D) T

Last Answer : (B) T

Description : The drying time between fixed moisture content within diffusion controlled 'falling rate period' is proportional to (assuming that drying occurs from all surfaces of the solid) (where, T = thickness of the solid). (A) √T (B) T (C) T 2 (D) T

Last Answer : (C) T

Description : From collision theory, the reaction rate constant is proportional to (A) exp (-E/RT) (B) exp (-E/2RT) (C) √T (D) T m exp (-E/RT)

Last Answer : (D) T m exp (-E/RT)

Description : Knudsen diffusion is directly proportional to (A) T (B) √T (C) 1/√T (D) T

Last Answer : (B) √T

Description : Which of the following statements is TRUE for an ideal gas, but not for a real gas?  A. PV = nRT  B. An increase in temperature causes an increase in the kinetic energy of the gas  C. The ... same as the volume of the gas as a whole  D. No attractive forces exists between the molecule of a gas

Last Answer : PV = nRT

Description : At absolute zero temperature, what will be the kinetic energy of the molecules? -Do You Know?

Last Answer : answer:

Description : At absolute zero temperature, what will be the kinetic energy of the molecules?

Last Answer : Zero

Description : _________ the very small KE still present in molecules at absolute zero temperature.  a. internal KE  b. Atomic kinetic energy  c. Zero-Point Energy  d. Subliminal Energy

Last Answer : Zero-Point Energy

Description : The evrage kinetic energy of molecules in a gas at temperature T is `1.5 KT`find the temperature at which the average kinetic energy of the molecules

Last Answer : The evrage kinetic energy of molecules in a gas at temperature T is `1.5 KT`find the temperature at which the ... `h = 8.62xx 10^(-6) eVK^(-1)`

Description : The pressure exerted by an ideal gas is __________ of the kinetic energy of all the molecules contained in a unit volume of gas.  A.one-half  B.one-third  C.two-third  D.three-fourth

Last Answer : Answer: C

Description : Which of the following is the Ideal gas law (equation)?  A. V/T = K  B. V= k*(1/P)  C. P1/T1 = P2/T2  D. PV = nRT

Last Answer : PV = nRT

Description : The electrons which spins about its axis will possess what kind of energy?  A. Translational energy  B. Spin energy  C. Rotational kinetic energy  D. Sensible energy

Last Answer : Spin energy

Description : The electrons in an atom which rotate about the nucleus possess what kind of energy?  A. Translational energy  B. Spin energy  C. Rotational kinetic energy  D. Sensible energy

Last Answer : Rotational kinetic energy

Description : The root mean square speed of molecules of a gas is equal to (where, m = mass of the molecule K = Boltzmann’s constant, T = absolute temperature) (A) √(2KT/m) (B) √(3KT/m) (C) √(6KT/m) (D) 3KT/m

Last Answer : (B) √(3KT/m)

Description : To obtain integrated form of Clausius-Clapeyron equation, ln (P2/P1) = (∆HV/R) (1/T1- 1/T2) from the exact Clapeyron equation, it is assumed that the (A) Volume of the liquid phase is negligible compared to ... gas (C) Heat of vaporisation is independent of temperature (D) All (A), (B) & (C)

Last Answer : (D) All (A), (B) & (C)

Description : When According to the kinetic theory of gases the kinetic energy of molecules is proportional to which factor?

Last Answer : The kinetic energy of gases is proportional to thetemperature.

Description : According to Arrhenius equation of temperature dependency of rate constant for an elementary reaction (A) k ∝ √T (B) k ∝ e -E/RT (C) k ∝ T e -E/RT (D) None of these

Last Answer : (B) k ∝ e -E/RT

Description : Stefan-Boltzmann law which describes the radiation heat transfer states that, it is proportional to (where, t = temperature in °C T = absolute temperature in ° K) (A) t 4 (B) T 4 (C) 1/t 4 (D) 1/T 4

Last Answer : (B) T

Description : The thermal radiation emitted by a body is proportional to T n , where T is its absolute temperature. The value of 'n' is exactly 4 for (A) Black painted bodies only (B) All bodies (C) Polished bodies only (D) A black body

Last Answer : (B) All bodies

Description : A solid spherical ball rolls on a table. The momen' of inertia of the ball is given by 3/5 x mass x radius2. The ratio of translational and rotational kinetic energies for ball will be a.2 b.7?16 c.5?3 d.7?8 e.1

Last Answer : c. 5?3

Description : The volume of a gas is directly proportional to the number of molecules of the gas.  a. Ideal gas law  b. Boyle-Mariotte Law  c. Avogadro’s Hypothesis  d. Gay-Lussac’s Law of combining Volumes

Last Answer : Avogadro’s Hypothesis

Description : The expression, nCv(T2- T1), is for the __________ of an ideal gas. (A) Work done under adiabatic condition (B) Co-efficient of thermal expansion (C) Compressibility (D) None of these

Last Answer : (A) Work done under adiabatic condition

Description : The expression for entropy change given by, ΔS = nR ln (V2/V1) + nCvln (T2/T1) is valid for (A) Reversible isothermal volume change (B) Heating of a substance (C) Cooling of a substance (D) Simultaneous heating and expansion of an ideal gas

Last Answer : (D) Simultaneous heating and expansion of an ideal gas

Description : If average kinetic energy of molecules is higher, then temperature of gas is A. high B. low C. zero D. infinite

Last Answer : high

Description : Temperature of a gas is produced due to  (a) its heating value  (b) kinetic energy of molecules  (c) repulsion of molecules  (d) attraction of molecules  (e) surface tension of molecules.

Last Answer : Answer : b

Description : Molecules of a solid possess a) Rotational motion b) Vibrational motion c) Translational motion d) All of above

Last Answer : b) Vibrational motion

Description : If we double the temperature of an ideal gas, then it's average kinetic energy will be A. halved B. triple the original C. fourth times of original D. doubled

Last Answer : doubled

Description : The local surface conductance for laminar film condensation on vertical surface is (where, t = film thickness) (A) ∝ t (B) ∝ 1/t (C) ∝ √t (D) Independent of 't

Last Answer : (B) ∝ 1/t

Description : Transition state theory relates the above quantities as (A) k ∝ e -E/RT (B) k ∝ T.e E/RT (C) k ∝ √T (D) k ∝ T 1.5

Last Answer : (B) k ∝ T.e E/RT

Description : Which of the following represents the Virial equation of state? (A) T = [RT/(V- b)] - [a/√T. V(V + b)] (B) PV/RT = 1 + (B/V) + (C/V2) + …… (C) n1u2 + μ2μ1 = 0 (D) None of these

Last Answer : (B) PV/RT = 1 + (B/V) + (C/V2) + ……

Description : Wavelength corresponding to the maximum energy is inversely proportional to the absolute temperature. This is __________ law. (A) Stefan's (B) Dalton's (C) Wien's (D) Kirchoff’s

Last Answer : (C) Wien's

Description : The efficiency of a Carnot heat engine operating between absolute temperatures T1 and T2 (when, T1 > T2) is given by (T1- T2)/T1. The co efficient of performance (C.O.P.) of a Carnot heat pump operating between T1 and T2is given by (A) T1/(T1-T2) (B) T2/(T1-T2) (C) T1/T2 (D) T2/R1

Last Answer : (A) T1/(T1-T2)

Description : The efficiency of a Carnot heat engine operating between absolute temperatures T1 and T2(when, T1 > T2) is given by (T1- T2)/T1. The co efficient of performance (CO.P.) of a Carnot heat pump operating between T1 and T2is given by (A) T1/(T1-T2) (B) T2/(T1-T2) (C) T1/T2 (D) T2/T1

Last Answer : (B) T2/(T1-T2)

Description : An ideal gas at 45psig and 80ºF is heated in the close container to 130ºF. What is the final pressure?  a. 65.10 psi  b. 65.11 psi  c. 65.23 psi  d. 61.16 psi P1V1/T1= P2V2/T2;V = Constant

Last Answer : 65.23 psi

Description : The increase in the rate of reaction with temperature is due to (A) Increase in the number of effective collisions (B) Decrease in activation energy (C) Increase in the average kinetic energy of the reacting molecules (D) None of these

Last Answer : (B) Decrease in activation energy

Description : The volume of a confined gas is held constant, the pressure is directly proportional to the absolute temperature.  a. Charle’s Law  b. Boyle’s Law  c. Joule’s Law  d. Specific Heat

Last Answer : Boyle’s Law