In case of turbulent flow of a Newtonian fluid in a straight pipe, the
maximum velocity is equal to (where, Vavg = average fluid velocity)
(A) Vavg
(B) 1.2 Vavg
(C) 1.5 Vavg
(D) 1.8 Vavg

1 Answer

Answer :

(B) 1.2 Vavg

Related questions

Description : Pick out the wrong statement pertaining to fluid flow. (A) The ratio of average velocity to the maximum velocity for turbulent flow of Newtonian fluid in circular pipes is 0.5 (B) The Newtonian ... at the centre of the pipe (C) Navier-Stokes equation is applicable to the analysis of viscous flows

Last Answer : (A) The ratio of average velocity to the maximum velocity for turbulent flow of Newtonian fluid in circular pipes is 0.5

Description : For turbulent flow of Newtonian fluid in a circular cross-section pipe, the ratio of maximum to average fluid velocity is (A) 0.5 (B) 1 (C) 0.66 (D) < 0.5

Last Answer : (B) 1

Description : The ratio of average fluid velocity to the maximum velocity in case of laminar flow of a Newtonian fluid in a circular pipe is (A) 0.5 (B) 1 (C) 2 (D) 0.66

Last Answer : (A) 0.5

Description : . In case of turbulent flow of fluid through a circular pipe, the (A) Mean flow velocity is about 0.5 times the maximum velocity (B) Velocity profile becomes flatter and flatter with ... , shear stresses, random orientation of fluid particles and slope of velocity profile at the wall are more

Last Answer : (D) Skin friction drag, shear stresses, random orientation of fluid particles and slope of velocity profile at the wall are more

Description : The fluid velocity varies as the cube of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop for __________ fluid. (A) Newtonian (B) Pseudo-plastic (C) Dilatent (D) Bingham plastic

Last Answer : (B) Pseudo-plastic

Description : The fluid velocity varies as the square of the cylindrical pipe diameter, in case of steady state laminar flow at constant pressure drop, for __________ fluid. (A) Newtonian (B) Dilatant (C) Pseudo-plastic (D) Non-Newtonian

Last Answer : (A) Newtonian

Description : The fluid velocity varies as the square root of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop of __________ fluid. (A) Dilatent (B) Pseudo-plastic (C) Bingham plastic (D) Newtonian

Last Answer : (A) Dilatent

Description : essure drop (Δp) for a fluid flowing in turbulent flow through a pipe is a function of velocity (V) as (A) V1.8 (B) V-0.2 (C) V2.7 (D) V

Last Answer : (D) V

Description : For laminar flow of Newtonian fluids through a circular pipe, for a given pressure drop and length & diameter of pipe, the velocity of fluid is proportional to (where, μ = fluid viscosity ) (A) μ (B) 1/μ (C) √μ (D) 1/√μ

Last Answer : (B) 1/μ

Description : Pick out the wrong statement: (A) Greater is the kinematic viscosity of the liquid, greater is the thickness of the boundary layer (B) Blowers develop a maximum pressure of 2 atmospheres ( ... factor in case of turbulent flow of liquids in pipe depends upon relative roughness & Reynolds number

Last Answer : (C) Friction losses in pipe fittings are generally expressed in terms of velocity heads

Description : Pick out the wrong statement. (A) The shear stress at the pipe (dia = D, length = L) wall in case of laminar flow of Newtonian fluids is (D/4L). ∆p (B) In the equation, T. gc = k. ... to motion (D) With increase in the Mach number >0.6, the drag co-efficient decreases in case of compressible fluids

Last Answer : (D) With increase in the Mach number >0.6, the drag co-efficient decreases in case of compressible fluids

Description : The head loss in turbulent flow in pipe is proportional to(where, V = velocity of fluid through the pipe) (A) V 2 (B) 1/V 2 (C) 1/V (D) V

Last Answer : (A) V

Description : Transition from laminar flow to turbulent flow in fluid flow through a pipe does not depend upon the (A) Length of the pipe (B) Diameter of the pipe (C) Density of the fluid (D) Velocity of the fluid

Last Answer : (A) Length of the pipe

Description : In case of laminar flow of fluid through a circular pipe, the (A) Shear stress over the cross-section is proportional to the distance from the surface of the pipe (B) Surface of velocity distribution is a ... occurs at a radial distance of 0.5 r from the centre of the pipe (r = pipe radius)

Last Answer : (B) Surface of velocity distribution is a paraboloid of revolution, whose volume equals half the volume of circumscribing cylinder

Description : A fluid is flowing inside the inner tube of a double pipe heat exchanger with diameter 'd'. For a fixed mass flow rate, the tube side heat transfer co￾efficient for turbulent flow conditions is proportional to (A) d 0.8 (B) d -0.2 (C) d -1 (D) d -1.8

Last Answer : (B) d -0.2

Description : he pressure drop per unit length of pipe incurred by a fluid 'X' flowing through pipe is Δp. If another fluid 'Y' having both the specific gravity & density just double of that of fluid 'X', flows through the same pipe ... then the pressure drop in this case will be (A) Δp (B) 2Δp (C) Δp 2 (D) Δp/2

Last Answer : (B) 2Δp

Description : Pick out the wrong statement. (A) Surface tension of a liquid is because of the difference in magnitude of adhesive & cohesive forces (B) A hydrometer used for the determination of ... Turbulent fluid flow is characterised by the rapid fluctuation of instantaneous pressure & velocity at a poin

Last Answer : (C) In case of unsteady fluid flow, the velocity at any given point does not change with time

Description : For laminar flow of Newtonian fluid in a circular pipe, the velocitydistribution is a function of the distance 'd' measured from the centre line of the pipe, and it follows a __________ relationship. (A) Logarithmic (B) Parabolic (C) Hyperbolic (D) Linear

Last Answer : (B) Parabolic

Description : In a fully turbulent flow (Re > 10 5 ) in a pipe of diameter 'd', for a constant pressure gradient, the dependence of volumetric flow rate of an incompressible fluid is (A) d (B) d 2 (C) d 2.5 (D) d

Last Answer : (C) d 2.5

Description : Pick out the wrong statement. (A) Momentum transfer in laminar flow results from velocity gradient (B) A fluid in equilibrium is not free from shear stress (C) The viscosity of a non-Newtonian fluid is a function of temperature only (D) Both (B) and (C)

Last Answer : (D) Both (B) and (C)

Description : Pick out the wrong statement. (A) The form drag is dependent upon the occurrence of a wake (B) The shear stress at any given cross-section of a pipe for steady flow (either laminar or turbulent ... of viscosity (D) Existence of the boundary layer in fluid flow is because of viscosity of the fluid

Last Answer : (C) An ideal fluid is the one, which has negligible surface tension and obeys the Newton's law of viscosity

Description : For turbulent flow of an incompressible fluid through a pipe, the flow rate ‘Q’ is proportional to (Δ P)n, where ΔP is the pressure drop. The value of exponent 'n' is (A) 1 (B) 0 (C) < 1 (D) > 1

Last Answer : (C) < 1

Description : The head loss in turbulent flow in a pipe varies (A) Directly as the velocity (B) Inversely as the square of the velocity (C) Approximately as the square of the velocity (D) Inversely as the square of the diameter

Last Answer : (C) Approximately as the square of the velocity

Description : For turbulent flow in smooth circular pipe, the velocity distribution is a function of the distance 'd' measured from the wall of the pipe and the friction velocity 'v', and it follows a __________ relationship. (A) Logarithmic (B) Linear (C) Hyperbolic (D) Parabolic

Last Answer : (A) Logarithmic

Description : The head loss in turbulent flow in a pipe varies (A) As velocity (B) As (velocity) 2 (C) Inversely as the square of diameter

Last Answer : (B) As (velocity)

Description : The head loss in turbulent flow in a pipe varies (A) As velocity (B) As (velocity) 2 (C) Inversely as the square of diameter

Last Answer : (C) Inversely as the square of diameter

Description : What is the ratio of total kinetic energy of fluid passing per second to the value obtained on the basis of average velocity (for laminar flow through a circular pipe)? (A) 0.5 (B) 1 (C) 1.5 (D) 2

Last Answer : (D) 2

Description : In case of unsteady fluid flow, conditions & flow pattern change with the passage of time at a position in a flow situation. Which of the following is an example of unsteady flow? (A) ... level is maintained (D) Low velocity flow of a highly viscous liquid through a hydraulically smooth pipe

Last Answer : (B) Water flow in the suction and discharge pipe of a reciprocating pump

Description : Heat transfer by conduction in the turbulent core of a fluid flowing through a heated pipe is negligible, if the value of Prandtl number is (A) 0.2 (B) 0.4 (C) 0.6 (D) 0.8

Last Answer : (C) 0.6

Description : For a given fluid, as the pipe diameter increases, the pumping cost (A) Decreases (B) Increases (C) Remains the same (D) May increase or decrease, depending upon whether the fluid is Newtonian or non-Newtonian

Last Answer : (A) Decreases

Description : In which type of fluid flow, the velocity of flow of fluid changes from point to point in the fluid at any instant? (A) Rotational (B) Unsteady (C) Turbulent (D) Non-uniform

Last Answer : (D) Non-uniform

Description : Pick out the wrong statement. (A) A fluid mass is free from shearing forces, when it is made to rotate with a uniform velocit (B) Newton's law of viscosity is not applicable to the ... types of bearings (D) Rise of water in capillary tubes reduces with the increasing diameter of capillary tubes

Last Answer : (B) Newton's law of viscosity is not applicable to the turbulent flow of fluid with linear velocity distribution

Description : Transition length for turbulent flow in smooth pipe is equal to __________ times the pipe diameter. (A) 0.5 (B) 5 (C) 50 (D) 500

Last Answer : (C) 50

Description : Pick out the correct statement. (A) Human blood is a Newtonian fluid (B) A Newtonian fluid obeys Newton's law of cooling (C) For a non-Newtonian fluid, a straight line passes through the origin in a plot between shear stress and shear gradien

Last Answer : (B) A Newtonian fluid obeys Newton's law of cooling

Description : In case of a pipe of constant cross-sectional area, the maximum fluid velocity obtainable is (A) The velocity of sound (B) Dependent on its cross-sectional area (C) Dependent on fluid viscosity (D) Dependent on fluid density

Last Answer : (A) The velocity of sound

Description : Convective heat transfer co-efficient in case of fluid flowing in tubes is not affected by the tube length/diameter ratio, if the flow is in the __________ zone. (A) Laminar (B) Transition (C) Both 'a' & 'b' (D) Highly turbulent

Last Answer : (D) Highly turbulent

Description : For the Stoke's law to be valid in the case of a falling sphere in a fluid, the (A) Reynolds number (based on sphere diameter) should be < 1 (B) Flow around the sphere should be in turbulent region (C) Sphere must be metallic (D) Fluid density should be constant

Last Answer : (C) Sphere must be metallic

Description : The Sieder-Tate correlation for heat transfer in turbulent flow in pipe gives Nu α Re 0.8 , where, Nu is the Nusselt number and Re is the Reynolds number for the flow. Assuming that this relation is valid, the heat transfer co-efficient ... pipe diameter (D) as (A) D-1.8 (B) D-0.2 (C) D0.2 (D) D1.8

Last Answer : (B) D-0.2

Description : At what value of Prandtl number, conduction is negligible in the turbulent core of a fluid flowing through a heated pipe? (A) 0.5 (B) < 0.5 (C) > 0.6 (D) < 0.1

Last Answer : (C) > 0.6

Description : Transition length for a turbulent fluid entering into a pipe is around __________ times the pipe diameter. (A) 5 (B) 50 (C) 500 (D) 5000

Last Answer : (B) 50

Description : The shear stress-strain graph for a Newtonian fluid is a (A) Straight line (B) Parabolic curve (C) Hyperbolic curve (D) Elliptical

Last Answer : Answer: Option A

Description : Consider the following statements in respect of steady laminar flow through a circular pipe: 1. Shear stress is zero on the central axis of the pipe 2. Discharge varies directly with the viscosity of the fluid 3. Velocity is maximum at the ... 2 , 3 & 4 (b) 1 & 3 only (c) 2 & 4 only (d)3 & 4 only

Last Answer : (b) 1 & 3 only

Description : The fluid in which the shearing stress within it is proportional to the velocity gradient across the sheared section, is called a __________ fluid. (A) Bingham (B) Newtonian (C) Perfect (D) None of these

Last Answer : (B) Newtonian

Description : A fluid is termed as the Newtonian fluid, when the shear stress is __________ the velocity gradient. (A) Independent of (B) Inversely proportional to (C) Directly proportional to (D) None of these

Last Answer : (C) Directly proportional to

Description : At Pr > 1, conduction in an ordinary fluid flowing through a heated pipe is limited to the (A) Buffer zone (B) Turbulent core (C) Both (A) and (B) (D) Viscous sub-layer

Last Answer : (D) Viscous sub-layer

Description : The most economical channel section for the fluid flow is the one for which the discharge is maximum for a given cross-sectional area. Vertical velocity distribution in an open channel for laminar flow can be assumed to be (A) Parabolic (B) Hyperbolic (C) Straight line (D) None of these

Last Answer : (A) Parabolic

Description : Laminar flow of a Newtonian fluid ceases to exist, when the Reynolds number exceeds (A) 4000 (B) 2100 (C) 1500 (D) 3000

Last Answer : (B) 2100

Description : Pressure gradient in the pipe flow is influenced by the (A) Diameter of pipe (B) Velocity of the fluid (C) Density & viscosity of the fluid (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : A fluid (µ/ρ) = 0.01 cm2 /sec is moving at critical flow condition (NRe = 2100) through a pipe of dia 3 cms. Velocity of flow is __________ cm/sec. (A) 7 (B) 700 (C) 7000 (D) 630

Last Answer : (A) 7