In a fully turbulent flow (Re > 10
5
) in a pipe of diameter 'd', for a
constant pressure gradient, the dependence of volumetric flow rate of an
incompressible fluid is
(A) d
(B) d
2
(C) d
2.5
(D) d

1 Answer

Answer :

(C) d
2.5

Related questions

Description : For turbulent flow of an incompressible fluid through a pipe, the flow rate ‘Q’ is proportional to (Δ P)n, where ΔP is the pressure drop. The value of exponent 'n' is (A) 1 (B) 0 (C) < 1 (D) > 1

Last Answer : (C) < 1

Description : For laminar flow of a shear thinning liquid in a pipe, if the volumetric flow rate is doubled, the pressure gradient will increase by a factor of (A) 2 (B) < 2 (C) > 2 (D) 1/2

Last Answer : (A) 2

Description : A fluid is flowing inside the inner tube of a double pipe heat exchanger with diameter 'd'. For a fixed mass flow rate, the tube side heat transfer co￾efficient for turbulent flow conditions is proportional to (A) d 0.8 (B) d -0.2 (C) d -1 (D) d -1.8

Last Answer : (B) d -0.2

Description : The Sieder-Tate correlation for heat transfer in turbulent flow in pipe gives Nu α Re 0.8 , where, Nu is the Nusselt number and Re is the Reynolds number for the flow. Assuming that this relation is valid, the heat transfer co-efficient ... pipe diameter (D) as (A) D-1.8 (B) D-0.2 (C) D0.2 (D) D1.8

Last Answer : (B) D-0.2

Description : Pressure gradient in the pipe flow is influenced by the (A) Diameter of pipe (B) Velocity of the fluid (C) Density & viscosity of the fluid (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : Transition from laminar flow to turbulent flow in fluid flow through a pipe does not depend upon the (A) Length of the pipe (B) Diameter of the pipe (C) Density of the fluid (D) Velocity of the fluid

Last Answer : (A) Length of the pipe

Description : Bernoulli's equation for fluid flow is derived following certain assumptions. Out of the assumptions listed below, which set of assumptions is used in derivation of Bernoulli's equation? A. Fluid flow is frictionless & irrotational. B. Fluid flow is ... A, C, D (B) B, D, E (C) A, B, E (D) A, D, E

Last Answer : (C) A, B, E

Description : At low Reynold's number, the power (P) required for agitating a fluid in a stirred tank becomes independent of inertial forces. In this limit, indicate which of the following relations is satisfied: Po = ρ/ρN3 D5 : Power number Re = ρ N D2 ... Re -1.0 (B) Po ∝ Re 0.0 (C) Po ∝ Re 0.5 (D) Po ∝ Re 1.0

Last Answer : (B) Po ∝ Re 0.0 (C) Po ∝ Re 0.5

Description : For the Stoke's law to be valid in the case of a falling sphere in a fluid, the (A) Reynolds number (based on sphere diameter) should be < 1 (B) Flow around the sphere should be in turbulent region (C) Sphere must be metallic (D) Fluid density should be constant

Last Answer : (C) Sphere must be metallic

Description : A straight line is obtained on plotting reciprocal of filtration rate vs. the volume of filtrate for __________ flow of filtrate. (A) Compressible cakes and laminar (B) Incompressible cake and laminar (C) Compressible cake and turbulent (D) Incompressible cake and turbulent

Last Answer : (B) Incompressible cake and laminar

Description : Water flows through a horizontal pipe at a constant volumetric rate. At a location where the cross sectional area decreases, the velocity of the fluid: (1) increases (2) decreases (3) stays the same (4) none of the above

Last Answer : (1) increases

Description : Water flows through a horizontal pipe at a constant volumetric rate. At a location where the cross sectional area decreases, the velocity of the fluid: w) increases x) decreases y) stays the same

Last Answer : ANSWER: W -- INCREASES 

Description : Transition length for a turbulent fluid entering into a pipe is around __________ times the pipe diameter. (A) 5 (B) 50 (C) 500 (D) 5000

Last Answer : (B) 50

Description : For pipe flows, head is proportional to __________ at constant capacity(where, D = pipe diameter). (A) 1/D (B) 1/D2 (C) 1/D5 (D) D

Last Answer : (C) 1/D5

Description : The fluid velocity varies as the cube of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop for __________ fluid. (A) Newtonian (B) Pseudo-plastic (C) Dilatent (D) Bingham plastic

Last Answer : (B) Pseudo-plastic

Description : The fluid velocity varies as the square of the cylindrical pipe diameter, in case of steady state laminar flow at constant pressure drop, for __________ fluid. (A) Newtonian (B) Dilatant (C) Pseudo-plastic (D) Non-Newtonian

Last Answer : (A) Newtonian

Description : The fluid velocity varies as the square root of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop of __________ fluid. (A) Dilatent (B) Pseudo-plastic (C) Bingham plastic (D) Newtonian

Last Answer : (A) Dilatent

Description : In an incompressible flow of fluid, the fluid (A) Temperature remains constant (B) Compressibility is greater than zero (C) Density does not change with pressure & temperature (D) Is frictionless

Last Answer : (C) Density does not change with pressure & temperature

Description : Where does the maximum stress occur in case of laminar flow of incompressible fluid in a closed conduit of diameter 'd'? (A) At the centre (B) At d/4 from the wall (C) At the wall (D) At d/8 from the wall

Last Answer : (C) At the wall

Description : Pick out the wrong statement pertaining to fluid flow. (A) The ratio of average velocity to the maximum velocity for turbulent flow of Newtonian fluid in circular pipes is 0.5 (B) The Newtonian ... at the centre of the pipe (C) Navier-Stokes equation is applicable to the analysis of viscous flows

Last Answer : (A) The ratio of average velocity to the maximum velocity for turbulent flow of Newtonian fluid in circular pipes is 0.5

Description : In case of turbulent flow of a Newtonian fluid in a straight pipe, the maximum velocity is equal to (where, Vavg = average fluid velocity) (A) Vavg (B) 1.2 Vavg (C) 1.5 Vavg (D) 1.8 Vavg

Last Answer : (B) 1.2 Vavg

Description : For turbulent flow of Newtonian fluid in a circular cross-section pipe, the ratio of maximum to average fluid velocity is (A) 0.5 (B) 1 (C) 0.66 (D) < 0.5

Last Answer : (B) 1

Description : . In case of turbulent flow of fluid through a circular pipe, the (A) Mean flow velocity is about 0.5 times the maximum velocity (B) Velocity profile becomes flatter and flatter with ... , shear stresses, random orientation of fluid particles and slope of velocity profile at the wall are more

Last Answer : (D) Skin friction drag, shear stresses, random orientation of fluid particles and slope of velocity profile at the wall are more

Description : Transition length for turbulent flow in smooth pipe is equal to __________ times the pipe diameter. (A) 0.5 (B) 5 (C) 50 (D) 500

Last Answer : (C) 50

Description : Pick out the wrong statement. (A) The form drag is dependent upon the occurrence of a wake (B) The shear stress at any given cross-section of a pipe for steady flow (either laminar or turbulent ... of viscosity (D) Existence of the boundary layer in fluid flow is because of viscosity of the fluid

Last Answer : (C) An ideal fluid is the one, which has negligible surface tension and obeys the Newton's law of viscosity

Description : The head loss in turbulent flow in pipe is proportional to(where, V = velocity of fluid through the pipe) (A) V 2 (B) 1/V 2 (C) 1/V (D) V

Last Answer : (A) V

Description : essure drop (Δp) for a fluid flowing in turbulent flow through a pipe is a function of velocity (V) as (A) V1.8 (B) V-0.2 (C) V2.7 (D) V

Last Answer : (D) V

Description : The head loss in turbulent flow in a pipe varies (A) Directly as the velocity (B) Inversely as the square of the velocity (C) Approximately as the square of the velocity (D) Inversely as the square of the diameter

Last Answer : (C) Approximately as the square of the velocity

Description : The head loss in turbulent flow in a pipe varies (A) As velocity (B) As (velocity) 2 (C) Inversely as the square of diameter

Last Answer : (B) As (velocity)

Description : The head loss in turbulent flow in a pipe varies (A) As velocity (B) As (velocity) 2 (C) Inversely as the square of diameter

Last Answer : (C) Inversely as the square of diameter

Description : The laminar boundary layer thickness in zero pressure gradient flow over a flat plate along the x-direction varies as x0.5 while the thickness of turbulent boundary layer varies as (where, x = distance from the leading edge) (A) x1.5 (B) x0.8 (C) x-1.5 (D) x-0.8

Last Answer : (B) x0.8

Description : An example of unsteady non uniform flow is the flow of liquid under pressure through a (A) Tapering pipe at constant flow rate (B) Tapering pipe at either decreasing or increasing flow rate (C) Long pipeline of constant diameter (D) None of these

Last Answer : (B) Tapering pipe at either decreasing or increasing flow rate

Description : Transition from laminar flow to turbulent flow is aided by the (A) Surface roughness and curvature (i.e. sharp corners) (B) Vibration (C) Pressure gradient and the compressibility of the flowing medium (D) All (A), (B) & (C)

Last Answer : (D) All (A), (B) & (C)

Description : Convective heat transfer co-efficient in case of fluid flowing in tubes is not affected by the tube length/diameter ratio, if the flow is in the __________ zone. (A) Laminar (B) Transition (C) Both 'a' & 'b' (D) Highly turbulent

Last Answer : (D) Highly turbulent

Description : Pick out the wrong statement. (A) A fluid mass is free from shearing forces, when it is made to rotate with a uniform velocit (B) Newton's law of viscosity is not applicable to the ... types of bearings (D) Rise of water in capillary tubes reduces with the increasing diameter of capillary tubes

Last Answer : (B) Newton's law of viscosity is not applicable to the turbulent flow of fluid with linear velocity distribution

Description : For laminar flow of Newtonian fluids through a circular pipe, for a given pressure drop and length & diameter of pipe, the velocity of fluid is proportional to (where, μ = fluid viscosity ) (A) μ (B) 1/μ (C) √μ (D) 1/√μ

Last Answer : (B) 1/μ

Description : The pressure drop per unit length for laminar flow of fluid through a long pipe is proportional to (where, A = cross-sectional area of the pipe & D = Diameter of the pipe) (A) A (B) D (C) 1/A (D) 1/A2

Last Answer : (C) 1/A

Description : With the increase in depth, the hydrostatic pressure in an un-accelerated incompressible fluid (in a constant gravitational field) (A) Decreases (B) Increases linearly (C) Increases exponentially (D) Remain constant

Last Answer : (B) Increases linearly

Description : Select the wrong statement pertaining to flow of an incompressible fluid through a Venturimeter. (A) For frictionless flow, the fluid pressure entering the venturi meter will be exactly equal ... than an orificemeter (D) Venturimeter incurs less power loss compared to an equivalent orificemeter

Last Answer : (C) Venturimeter occupies less space than an orificemeter

Description : Consider the following statements in respect of steady laminar flow through a circular pipe: 1. Shear stress is zero on the central axis of the pipe 2. Discharge varies directly with the viscosity of the fluid 3. Velocity is maximum at the ... 2 , 3 & 4 (b) 1 & 3 only (c) 2 & 4 only (d)3 & 4 only

Last Answer : (b) 1 & 3 only

Description : Pick out the wrong statement: (A) Greater is the kinematic viscosity of the liquid, greater is the thickness of the boundary layer (B) Blowers develop a maximum pressure of 2 atmospheres ( ... factor in case of turbulent flow of liquids in pipe depends upon relative roughness & Reynolds number

Last Answer : (C) Friction losses in pipe fittings are generally expressed in terms of velocity heads

Description : The characteristic dimensionless groups for heat transfer to a fluid flowing through a pipe in laminar flow are (A) Re.Gz (B) Nu, Pr (C) Nu, Pr, Re (D) Nu, Gz

Last Answer : (D) Nu, Gz

Description : At what value of Prandtl number, conduction is negligible in the turbulent core of a fluid flowing through a heated pipe? (A) 0.5 (B) < 0.5 (C) > 0.6 (D) < 0.1

Last Answer : (C) > 0.6

Description : A compound pipe of diameter d1, d2 and d3 having lengths l1, l2 and l3 is to be replaced by an equivalent pipe of uniform diameter d and of the same length (l) as that of the compound pipe. The size of the equivalent pipe is given by (A) l/d² = + + (B) l/d³ = + ) + (C) = + + (D)

Last Answer : Answer: Option D

Description : Bernoulli's principle states that, for streamline motion of an incompressible non-viscous fluid: A. the pressure at any part + the kinetic energy per unit volume = constant B. the kinetic ... + the kinetic energy per unit volume + the potential energy per unit volume = constant

Last Answer : the pressure at any part + the kinetic energy per unit volume + the potential energy per unit volume = constant

Description : At Pr > 1, conduction in an ordinary fluid flowing through a heated pipe is limited to the (A) Buffer zone (B) Turbulent core (C) Both (A) and (B) (D) Viscous sub-layer

Last Answer : (D) Viscous sub-layer

Description : Heat transfer by conduction in the turbulent core of a fluid flowing through a heated pipe is negligible, if the value of Prandtl number is (A) 0.2 (B) 0.4 (C) 0.6 (D) 0.8

Last Answer : (C) 0.6

Description : For turbulent flow in a tube, the heat transfer co-efficient is obtained from the Dittus-Boelter correlation. If the tube diameter is halved and the flow rate is doubled, then the heat transfer co-efficient will change by a factor of (A) 1 (B) 1.74 (C) 6.1 (D) 37

Last Answer : (C) 6.1