Pressure gradient in the pipe flow is influenced by the
(A) Diameter of pipe
(B) Velocity of the fluid
(C) Density & viscosity of the fluid
(D) All (A), (B) and (C)

1 Answer

Answer :

(D) All (A), (B) and (C)

Related questions

Description : For laminar flow of Newtonian fluids through a circular pipe, for a given pressure drop and length & diameter of pipe, the velocity of fluid is proportional to (where, μ = fluid viscosity ) (A) μ (B) 1/μ (C) √μ (D) 1/√μ

Last Answer : (B) 1/μ

Description : Critical velocity in a pipe flow (A) Increases as fluid viscosity increases (B) Increases as pipe diameter increases (C) Independent of fluid density (D) None of these

Last Answer : (B) Increases as pipe diameter increases

Description : Consider the following statements in respect of steady laminar flow through a circular pipe: 1. Shear stress is zero on the central axis of the pipe 2. Discharge varies directly with the viscosity of the fluid 3. Velocity is maximum at the ... 2 , 3 & 4 (b) 1 & 3 only (c) 2 & 4 only (d)3 & 4 only

Last Answer : (b) 1 & 3 only

Description : In a fully turbulent flow (Re > 10 5 ) in a pipe of diameter 'd', for a constant pressure gradient, the dependence of volumetric flow rate of an incompressible fluid is (A) d (B) d 2 (C) d 2.5 (D) d

Last Answer : (C) d 2.5

Description : Shell side pressure drop in a shell and tube heat exchanger does not depend upon the (A) Baffle spacing & shell diameter (B) Tube diameter & pitch (C) Viscosity, density & mass velocity of shell side fluid (D) None of these

Last Answer : (D) None of these

Description : Location of vena-contracta in an orificemeter does not depend upon the (A) Type of orifice (B) Density, viscosity & compressibility of the fluid (C) Ratio of pipe diameter to orifice diameter (D) Pipe roughness

Last Answer : (A) Type of orifice

Description : Transition from laminar flow to turbulent flow in fluid flow through a pipe does not depend upon the (A) Length of the pipe (B) Diameter of the pipe (C) Density of the fluid (D) Velocity of the fluid

Last Answer : (A) Length of the pipe

Description : Friction factor for fluid flow in pipe does not depend upon the (A) Pipe length (B) Pipe roughness (C) Fluid density & viscosity (D) Mass flow rate of fluid

Last Answer : A) Pipe length

Description : he pressure drop per unit length of pipe incurred by a fluid 'X' flowing through pipe is Δp. If another fluid 'Y' having both the specific gravity & density just double of that of fluid 'X', flows through the same pipe ... then the pressure drop in this case will be (A) Δp (B) 2Δp (C) Δp 2 (D) Δp/2

Last Answer : (B) 2Δp

Description : Pick out the wrong statement. (A) Momentum transfer in laminar flow results from velocity gradient (B) A fluid in equilibrium is not free from shear stress (C) The viscosity of a non-Newtonian fluid is a function of temperature only (D) Both (B) and (C)

Last Answer : (D) Both (B) and (C)

Description : Optimum economic pipe diameter for fluid is determined by the (A) Viscosity of the fluid (B) Density of the fluid (C) Total cost considerations (pumping cost plus fixed cost of the pipe) (D) None of these

Last Answer : (C) Total cost considerations (pumping cost plus fixed cost of the pipe)

Description : Momentum transfer in laminar flow of fluids results due to the (A) Viscosity (B) Density (C) Velocity gradient (D) None of these

Last Answer : (C) Velocity gradient

Description : In case of a pipe of constant cross-sectional area, the maximum fluid velocity obtainable is (A) The velocity of sound (B) Dependent on its cross-sectional area (C) Dependent on fluid viscosity (D) Dependent on fluid density

Last Answer : (A) The velocity of sound

Description : The fluid velocity varies as the cube of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop for __________ fluid. (A) Newtonian (B) Pseudo-plastic (C) Dilatent (D) Bingham plastic

Last Answer : (B) Pseudo-plastic

Description : The fluid velocity varies as the square of the cylindrical pipe diameter, in case of steady state laminar flow at constant pressure drop, for __________ fluid. (A) Newtonian (B) Dilatant (C) Pseudo-plastic (D) Non-Newtonian

Last Answer : (A) Newtonian

Description : The fluid velocity varies as the square root of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop of __________ fluid. (A) Dilatent (B) Pseudo-plastic (C) Bingham plastic (D) Newtonian

Last Answer : (A) Dilatent

Description : Newton's law of viscosity relates the (A) Shear stress and velocity (B) Velocity gradient and pressure intensity (C) Shear stress and rate of angular deformation in a fluid (D) Pressure gradient and rate of angular deformation

Last Answer : (C) Shear stress and rate of angular deformation in a fluid

Description : At the point of boundary layer separation in fluid flow, the (A) Shear stress is maximum (B) Velocity gradient is flat (C) Density variation is maximum (D) Shear stress is zero

Last Answer : Option A

Description : Pick out the wrong statement: (A) Greater is the kinematic viscosity of the liquid, greater is the thickness of the boundary layer (B) Blowers develop a maximum pressure of 2 atmospheres ( ... factor in case of turbulent flow of liquids in pipe depends upon relative roughness & Reynolds number

Last Answer : (C) Friction losses in pipe fittings are generally expressed in terms of velocity heads

Description : Pick out the wrong statement. (A) A fluid mass is free from shearing forces, when it is made to rotate with a uniform velocit (B) Newton's law of viscosity is not applicable to the ... types of bearings (D) Rise of water in capillary tubes reduces with the increasing diameter of capillary tubes

Last Answer : (B) Newton's law of viscosity is not applicable to the turbulent flow of fluid with linear velocity distribution

Description : The pressure drop per unit length for laminar flow of fluid through a long pipe is proportional to (where, A = cross-sectional area of the pipe & D = Diameter of the pipe) (A) A (B) D (C) 1/A (D) 1/A2

Last Answer : (C) 1/A

Description : Discharge in laminar flow through a pipe varies (A) As the square of the radius (B) Inversely as the pressure drop (C) Inversely as the viscosity (D) As the square of the diameter

Last Answer : (A) As the square of the radius

Description : The terminal velocity of a small sphere settling in a viscous fluid varies as the (A) First power of its diameter (B) Inverse of the fluid viscosity (C) Inverse square of the diameter (D) Square of the difference in specific weights of solid & fluid

Last Answer : (B) Inverse of the fluid viscosity

Description : Power required for mixing Newtonian fluids is a function of the (A) Speed of impeller, diameter of impeller & viscosity (B) Density & viscosity of fluid only (C) Density of fluid, viscosity of fluid & impeller dia only (D) None of these

Last Answer : (D) None of these

Description : Reynolds number for water flow through a tube of I.D. 5 cm is 1500. If a liquid of 5 centipoise viscosity and 0.8 specific gravity flows in the same pipe at the same velocity, then the pressure drop will (A) Increase (B) Decrease (C) Remain same (D) Data insufficient to predict pressure drop

Last Answer : (A) Increase

Description : The flow of gas along a pipe in the direction of decreasing pressure causes decrease in its (A) Viscosity (B) Specific volume (C) Velocity (D) None of these

Last Answer : (B) Specific volume

Description : Reynolds number of a fluid flowing in a circular pipe is 10,000. What will be the Reynolds number when the fluid velocity is decreased by 30% & the pipe diameter is increased by 30%? (A) 9,100 (B) 13,000 (C) 7,000 (D) 2,550

Last Answer : (A) 9,100

Description : Minimum fluidisation velocity for a specific system depends upon the (A) Particle size (B) Fluid viscosity (C) Density of both the particle & the fluid (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : Pick out the wrong statement about cavitation. (A) Sudden reduction of pressure in a fluid flow system caused by flow separation, vortex formation or abrupt closing of valve leads to cavitation ... (D) Large scale cavitation cannot damage pipeline, restrict fluid flow and damage steam turbine blades

Last Answer : (D) Large scale cavitation cannot damage pipeline, restrict fluid flow and damage steam turbine blades

Description : Two fluids are flowing through two similar pipes of the same diameter. The Reynold's number is same. For the same flow rate if the viscosity of a fluid is reduced to half the value of the ... (A) Increase (B) Decrease (C) Remain unchanged (D) Data insufficient to predict relative pressure drop

Last Answer : (B) Decrease

Description : In case of unsteady fluid flow, conditions & flow pattern change with the passage of time at a position in a flow situation. Which of the following is an example of unsteady flow? (A) ... level is maintained (D) Low velocity flow of a highly viscous liquid through a hydraulically smooth pipe

Last Answer : (B) Water flow in the suction and discharge pipe of a reciprocating pump

Description : Pick out the wrong statement. (A) The form drag is dependent upon the occurrence of a wake (B) The shear stress at any given cross-section of a pipe for steady flow (either laminar or turbulent ... of viscosity (D) Existence of the boundary layer in fluid flow is because of viscosity of the fluid

Last Answer : (C) An ideal fluid is the one, which has negligible surface tension and obeys the Newton's law of viscosity

Description : Hydraulic mean depth (Dm) for a circular pipe of diameter 'D' flowing full is 0.25 D. For a circular channel, at Dm = 0.3 D, gives the condition for the maximum (A) Flow rate (B) Mean velocity (C) Both 'a' & 'b' (D) Neither 'a' nor 'b

Last Answer : (B) Mean velocity

Description : If the viscosity of ground water is 1.00, the Slitcher's constant is 400, the effective size of soil particles in aquifer is 0.5 mm and hydraulic gradient is 1 in 80, the velocity of flow is (A) 0.25 m/day (B) 0.50 m/day (C) 1.00 m/day (D) 1.25 m/day

Last Answer : Answer: Option D

Description : Which of the following parameters of the fluid is not very important, while deciding its route in a shell and tube heat exchanger? (A) Corrosiveness & fouling characteristics (B) Pressure (C) Viscosity (D) Density

Last Answer : (D) Density

Description : The loss of head due to viscosity for laminar flow in pipes is (where d = Diameter of pipe, l = Length of pipe, v w = Specific weight of the flowing liquid) (A) 4 (B) 8 (C) 16 (D) 32

Last Answer : Answer: Option D

Description : When a liquid moves through a pipe having a varying diameter, the pressure against the inside walls of the pipe will be: w) the same throughout x) lowest where the diameter is smallest y) lowest where the diameter is largest z) lowest where the velocity of flow is lowest 

Last Answer : ANSWER: X -- LOWEST WHERE THE DIAMETER IS SMALLEST

Description : For laminar flow of a shear thinning liquid in a pipe, if the volumetric flow rate is doubled, the pressure gradient will increase by a factor of (A) 2 (B) < 2 (C) > 2 (D) 1/2

Last Answer : (A) 2

Description : The terminal velocity of a sphere setting in a viscous fluid varies as : (a) The Reynolds number (b) The square of its diameter (c) Directly proportional to the viscosity of the fluid (d) Its diameter

Last Answer : (b) The square of its diameter

Description : A fluid is flowing inside the inner tube of a double pipe heat exchanger with diameter 'd'. For a fixed mass flow rate, the tube side heat transfer co￾efficient for turbulent flow conditions is proportional to (A) d 0.8 (B) d -0.2 (C) d -1 (D) d -1.8

Last Answer : (B) d -0.2

Description : The maximum discharge through a circular channel takes place, when the depth of the fluid flow is __________ times the pipe diameter. (A) 0.25 (B) 0.5 (C) 0.66 (D) 0.95

Last Answer : (D) 0.95

Description : When a small spherical body falls in a viscous fluid, its speed increases first, then deceases and eventually it acquires a constant speed called the terminal speed. The terminal speed depends upon (a) The ... ) The density of the body (c) The diameter of the body (d) All the above parameters

Last Answer : Ans:(d)

Description : When a fluid flows over a solid surface, the (A) Velocity is uniform at any cross-section (B) Velocity gradient is zero at the solid surface (C) Resistance between the surface & the fluid is lesser as compared to that between the fluid layers themselves (D) Velocity is not zero at the solid surface

Last Answer : (B) Velocity gradient is zero at the solid surface

Description : The gradient of sewers depends upon A. Velocity of flow B. Diameter of the sewer C. Discharge D. All the above

Last Answer : ANS: D

Description : Which of the following must be followed by the flow of a fluid (real or ideal)? (I) Newton's law of viscosity. (II) Newton's second law of motion. (III) The continuity equation. (IV) Velocity of boundary layer must be zero relative to ... . (A) I, II, III (B) II, III, V (C) I, II, V (D) II, IV, V

Last Answer : (B) II, III, V

Description : Existence of boundary layer in fluid flow is because of the (A) Surface tension (B) Fluid density (C) Fluid viscosity (D) Gravity forces

Last Answer : (C) Fluid viscosity

Description : At the center line of a pipe flowing under pressure where the velocity gradient is zero, the shear stress will be (A) Minimum (B) Maximum (C) Zero (D) Could be any value

Last Answer : Answer: Option D

Description : The hydraulic gradient line lies over the centre line of the pipe by an amount equal to the (A) Pressure head (B) Velocity head (C) Pressure head + velocity head (D) Pressure head - velocity head

Last Answer : Answer: Option A

Description : In case of laminar flow of fluid through a circular pipe, the (A) Shear stress over the cross-section is proportional to the distance from the surface of the pipe (B) Surface of velocity distribution is a ... occurs at a radial distance of 0.5 r from the centre of the pipe (r = pipe radius)

Last Answer : (B) Surface of velocity distribution is a paraboloid of revolution, whose volume equals half the volume of circumscribing cylinder