The velocity profile for turbulent flow through a closed conduit is
(A) Logarithmic
(B) Parabolic
(C) Hyperbolic
(D) Linear

1 Answer

Answer :

(A) Logarithmic

Related questions

Description : For turbulent flow in smooth circular pipe, the velocity distribution is a function of the distance 'd' measured from the wall of the pipe and the friction velocity 'v', and it follows a __________ relationship. (A) Logarithmic (B) Linear (C) Hyperbolic (D) Parabolic

Last Answer : (A) Logarithmic

Description : For laminar flow of Newtonian fluid in a circular pipe, the velocitydistribution is a function of the distance 'd' measured from the centre line of the pipe, and it follows a __________ relationship. (A) Logarithmic (B) Parabolic (C) Hyperbolic (D) Linear

Last Answer : (B) Parabolic

Description : Which law is followed by the velocity distribution in the turbulent boundary layer? (A) Parabolic law (B) Linear law (C) Logarithmic law (D) None of these

Last Answer : (C) Logarithmic law

Description : If the thermal conductivity of a wall material is independent of temperature, the steady state temperature distribution in the very large thin plane wall having steady, uniform surface temperature follows __________ ... (A) Hyperbolic (B) Parabolic (C) Linear (D) Logarithmic

Last Answer : (C) Linear

Description : If the thermal conductivity of a wall material is independent of temperature, the steady state temperature distribution in the very large thin plane wall having steady, uniform surface temperature follows __________ law. (A) Parabolic (B) Hyperbolic (C) Linear (D) Logarithmic

Last Answer : (A) Parabolic

Description : The velocity distribution in direction normal to the direction of flow in plane Poiseuille flow is (A) Hyperbolic (B) Parabolic (C) Linear (D) None of these

Last Answer : (B) Parabolic

Description : Temperature profile in steady state heat transfer is (A) Asymptotic (B) Hyperbolic (C) Parabolic (D) Linear

Last Answer : (D) Linear

Description : In case of heat flow by conduction for a cylindrical body with an internal heat source, the nature of temperature distribution is (A) Linear (B) Hyperbolic (C) Parabolic (D) None of these

Last Answer : (C) Parabolic

Description : The distribution of shear stress in a stream of fluid in a circular tube is (A) Linear with radius for turbulent flow only (B) Linear with radius for laminar flow only (C) Linear with radius for both laminar & turbulent flow (D) Parabolic with radius for both laminar & turbulent flow

Last Answer : (C) Linear with radius for both laminar & turbulent flow

Description : . In case of turbulent flow of fluid through a circular pipe, the (A) Mean flow velocity is about 0.5 times the maximum velocity (B) Velocity profile becomes flatter and flatter with ... , shear stresses, random orientation of fluid particles and slope of velocity profile at the wall are more

Last Answer : (D) Skin friction drag, shear stresses, random orientation of fluid particles and slope of velocity profile at the wall are more

Description : The most economical channel section for the fluid flow is the one for which the discharge is maximum for a given cross-sectional area. Vertical velocity distribution in an open channel for laminar flow can be assumed to be (A) Parabolic (B) Hyperbolic (C) Straight line (D) None of these

Last Answer : (A) Parabolic

Description : The stress-strain relation of the Newtonian fluid is (A) Linear (B) Parabolic (C) Hyperbolic (D) Inverse type

Last Answer : Answer: Option A

Description : The variation of shear stress in a circular shaft subjected to torsion is a. Linear b. Parabolic c. Hyperbolic. d. Uniform

Last Answer : a. Linear

Description : Shear strain is a (a) Linear strain (b) Parabolic strain (c) Logarithmic strain (d) None

Last Answer : (d) None

Description : Pick out the wrong statement. (A) A fluid mass is free from shearing forces, when it is made to rotate with a uniform velocit (B) Newton's law of viscosity is not applicable to the ... types of bearings (D) Rise of water in capillary tubes reduces with the increasing diameter of capillary tubes

Last Answer : (B) Newton's law of viscosity is not applicable to the turbulent flow of fluid with linear velocity distribution

Description : Mass velocity in case of steady flow and through a constant cross￾section conduit is independent of the (A) Temperature (B) Pressure (C) Both (A) & (B) (D) Neither (A) nor (B)

Last Answer : (C) Both (A) & (B)

Description : Where does the maximum stress occur in case of laminar flow of incompressible fluid in a closed conduit of diameter 'd'? (A) At the centre (B) At d/4 from the wall (C) At the wall (D) At d/8 from the wall

Last Answer : (C) At the wall

Description : The velocity profile for a Bingham plastic fluid flowing (under laminar conditions) in a pipe is (A) Parabolic (B) Flat (C) Flat near the wall and parabolic in the middle (D) Parabolic near the wall and flat in the middle

Last Answer : (D) Parabolic near the wall and flat in the middle

Description : If a fluid expands suddenly into vacuum through an orifice of large dimension, then such a process is called  (a) free expansion  (b) hyperbolic expansion  (c) adiabatic expansion  (d) parabolic expansion  (e) throttling.

Last Answer : Answer : a

Description : If a gas vapour is allowed to expand through a very minute aperture, then such a process is known as  (a) free expansion  (b) hyperbolic expansion  (c) adiabatic expansion  (d) parabolic expansion  (e) throttling.

Last Answer : Answer : e

Description : For minimum work input in a two stage compression process the intermediated pressure is the A. Arithmetic process of suction and discharge pressure B. Logarithmic mean of suction and discharge pressure C. Geometric mean of suction and discharge pressure D. Hyperbolic mean of suction and discharge

Last Answer : ANSWER : C

Description : The head loss in turbulent flow in pipe is proportional to(where, V = velocity of fluid through the pipe) (A) V 2 (B) 1/V 2 (C) 1/V (D) V

Last Answer : (A) V

Description : essure drop (Δp) for a fluid flowing in turbulent flow through a pipe is a function of velocity (V) as (A) V1.8 (B) V-0.2 (C) V2.7 (D) V

Last Answer : (D) V

Description : Transition from laminar flow to turbulent flow in fluid flow through a pipe does not depend upon the (A) Length of the pipe (B) Diameter of the pipe (C) Density of the fluid (D) Velocity of the fluid

Last Answer : (A) Length of the pipe

Description : The curve of a catenary by nature is a.hyperbolic b.ellipse c.107 dynes d.circular e.parabolic

Last Answer : e. parabolic

Description : Graph of potential energy against distance is A. curve B. parabolic C. hyperbolic D. straight line

Last Answer : straight line

Description : An ideal vertical curve to join two gradients, is (A) Circular (B) Parabolic (C) Elliptical (D) Hyperbolic

Last Answer : (B) Parabolic

Description : The shear stress-strain graph for a Newtonian fluid is a (A) Straight line (B) Parabolic curve (C) Hyperbolic curve (D) Elliptical

Last Answer : Answer: Option A

Description : Increase-strain curve of concrete is (a) A perfect straight line upto failure (b) Straight line up to 0.002% strain value and then parabolic upto failure (c) Nearly parabolic up to 0.002% strain ... line upto failure (d) Hyperbolic up to 0.002% strain value and then a straight line upto failure

Last Answer : (c) Nearly parabolic up to 0.002% strain value and the a straight line upto failure

Description : Consider the following statements: Mitra's hyperbolic transition design is based on the principle that : 1. Flow depth in the canal, as well as the discharge, is constant 2. width of the canal varies along with the discharge 3. Rate ... a) 1, 2 and 3 b) 1 and 2 only c) 2 and 3 only d) 1 and 3 only

Last Answer : d) 1 and 3 only

Description : In case of laminar flow of fluid through a circular pipe, the (A) Shear stress over the cross-section is proportional to the distance from the surface of the pipe (B) Surface of velocity distribution is a ... occurs at a radial distance of 0.5 r from the centre of the pipe (r = pipe radius)

Last Answer : (B) Surface of velocity distribution is a paraboloid of revolution, whose volume equals half the volume of circumscribing cylinder

Description : In which of the following cases, it is possible for flow to occur from low pressure to high pressure? (A) Flow of liquid upward in a vertical pipe (B) Flow through a converging section (C) Flow of air downward in a pipe (D) Impossible in a constant cross-section conduit

Last Answer : (B) Flow through a converging section

Description : The head loss in turbulent flow in a pipe varies (A) Directly as the velocity (B) Inversely as the square of the velocity (C) Approximately as the square of the velocity (D) Inversely as the square of the diameter

Last Answer : (C) Approximately as the square of the velocity

Description : In which type of fluid flow, the velocity of flow of fluid changes from point to point in the fluid at any instant? (A) Rotational (B) Unsteady (C) Turbulent (D) Non-uniform

Last Answer : (D) Non-uniform

Description : Pick out the wrong statement pertaining to fluid flow. (A) The ratio of average velocity to the maximum velocity for turbulent flow of Newtonian fluid in circular pipes is 0.5 (B) The Newtonian ... at the centre of the pipe (C) Navier-Stokes equation is applicable to the analysis of viscous flows

Last Answer : (A) The ratio of average velocity to the maximum velocity for turbulent flow of Newtonian fluid in circular pipes is 0.5

Description : Pick out the wrong statement: (A) Greater is the kinematic viscosity of the liquid, greater is the thickness of the boundary layer (B) Blowers develop a maximum pressure of 2 atmospheres ( ... factor in case of turbulent flow of liquids in pipe depends upon relative roughness & Reynolds number

Last Answer : (C) Friction losses in pipe fittings are generally expressed in terms of velocity heads

Description : The head loss in turbulent flow in a pipe varies (A) As velocity (B) As (velocity) 2 (C) Inversely as the square of diameter

Last Answer : (B) As (velocity)

Description : The head loss in turbulent flow in a pipe varies (A) As velocity (B) As (velocity) 2 (C) Inversely as the square of diameter

Last Answer : (C) Inversely as the square of diameter

Description : In case of turbulent flow of a Newtonian fluid in a straight pipe, the maximum velocity is equal to (where, Vavg = average fluid velocity) (A) Vavg (B) 1.2 Vavg (C) 1.5 Vavg (D) 1.8 Vavg

Last Answer : (B) 1.2 Vavg

Description : For turbulent flow of Newtonian fluid in a circular cross-section pipe, the ratio of maximum to average fluid velocity is (A) 0.5 (B) 1 (C) 0.66 (D) < 0.5

Last Answer : (B) 1

Description : Pick out the wrong statement. (A) Surface tension of a liquid is because of the difference in magnitude of adhesive & cohesive forces (B) A hydrometer used for the determination of ... Turbulent fluid flow is characterised by the rapid fluctuation of instantaneous pressure & velocity at a poin

Last Answer : (C) In case of unsteady fluid flow, the velocity at any given point does not change with time

Description : The partial pressure distribution of an ideal gas diffusing through another stagnant ideal gas at steady state follows a/an __________ law. (A) Exponential (B) Parabolic (C) Linear (D) Cubic

Last Answer : (A) Exponential

Description : A radioactive isotope undergoes decay with respect to time following __________ law. (A) Logarithmic (B) Exponential (C) Linear (D) Inverse square

Last Answer : (B) Exponential

Description : Humid volume, at a given temperature is a/an __________ function of humidity. (A) Inverse (B) Exponential (C) Linear (D) Logarithmic

Last Answer : (C) Linear

Description : 11. The velocity at which the turbulent flow starts is known as higher critical velocity. A) Yes B) No

Last Answer : A

Description : The flow in which the velocity vector is identical in magnitude and direction at every point, for any given instant, is known as (A) One dimensional flow (B) Uniform flow (C) Steady flow (D) Turbulent flow

Last Answer : Answer: Option B

Description : The velocity at which the flow changes from laminar flow to turbulent flow is called (A) Critical velocity (B) Velocity of approach (C) Sub-sonic velocity (D) Super-sonic velocity

Last Answer : Answer: Option A

Description : For heat flow through very thick walled cylinder, use _________mean radius. (A) Arithmetic (B) Logarithmic (C) Geometric (D) Either (A) or (C)

Last Answer : (B) Logarithmic

Description : Pick out the correct statement. (A) Higher is the temperature of the radiating body, higher is the wavelength of radiation (B) Logarithmic mean area is used for calculating the heat flow rate ... ) Solid angle subtended by the finite surface at the radiating element is called the angle of incidence

Last Answer : (B) Logarithmic mean area is used for calculating the heat flow rate through a thick walled cylinder