n which direction does the accelerating force acts?
a) Opposite to the motion
b) Along the motion
c) Perpendicular to motion
d) Variable

1 Answer

Answer :

b) Along the motion

Related questions

Description : In which direction does the damping force acts? a) Opposite to the motion b) Along the motion c) Perpendicular to motion d) Variable

Last Answer : a) Opposite to the motion

Description : Which of the following statements is/are true for coulomb damping? 1. Coulomb damping occurs due to friction between two lubricated surfaces2. Damping force is opposite to the direction of motion of vibrating body ... 2, 3 and statement 4 c. Only statement 2 d. All the above statements are true

Last Answer : c. Only statement 2

Description : In a spring-mass system, which of the following force is not considered? A Spring force B Damping force C Accelerating force D A and B

Last Answer : B Damping force

Description : In a spring-mass system, which of the following force is not considered? B ( A ) Spring force ( B ) Damping force ( C ) Accelerating force ( D ) A and B

Last Answer : B ) Damping force

Description : A vibrating machine of 100 kg is mounted on a rubber pad which has stiffness of 500 N/m. Determine force transmitted to the foundation if the unbalanced force 500 N acts on it. The frequency ratio (ω/ω n ) is 1.5 and ξ = 0.5 A. 461.62 N B. 400.23 N C. 450 N D. Insufficient data

Last Answer : A. 461.62 N

Description : If harmonic motion of same frequency and same phase are superimposed in two perpendicular directions ( x and y) then, the resultant motion will be, A) circle B) An ellipse C) An square D) An rectangle

Last Answer : C) An square

Description : A moving fluid mass may be brought to a static equilibrium position, by applying an imaginary inertia force of the same magnitude as that of the accelerating force but in the opposite direction. This statement is called (A) Pascal's law (B) (C) D-Alembert's principle (D) None of these

Last Answer : Answer: Option C

Description : Force acts in a direction opposite to the di- rection of motion is?

Last Answer : Static friction

Description : In a solid arch, shear force acts (A) Vertically upwards (B) Along the axis of the arch (C) Perpendicular to the axis of arch (D) Tangentially to the arch

Last Answer : (C) Perpendicular to the axis of arch

Description : The damping is used to control the __________ of body. A. Force B. Viscosity C. Motion D. None

Last Answer : C. Motion

Description : The equation of motion for spring mass system includes A. Inertia Force B. Spring Force C. Both D. Gravitational force

Last Answer : C. Both

Description : In a two-rotor system, torsional vibration occurs only if the rotors are moving in the ______ direction. (A) same (B) opposite (C) either same or opposite (D) none of the above

Last Answer : (B) opposite

Description : In a two-rotor system, torsional vibration occurs only if the rotors are moving in the ______ direction. A. same B. opposite C. either same or opposite D. none of the above

Last Answer : B. opposite

Description : In the diagram shown below, if rotor X and rotor Z rotate in same direction and rotor Y rotates in opposite direction, then specify the type of node vibration. A. Three node vibration B. Two node vibration C. Single node vibration D. None of the above

Last Answer : B. Two node vibration

Description : Which of the following statements is/are true? A. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction B. Shaft vibrates with maximum frequency when rotors ... C. Zero node behavior is observed in rotors rotating in opposite direction D. All of the above

Last Answer : A. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction

Description : In the diagram shown below, if rotor X and rotor Z rotate in same direction and rotor Y rotates in opposite direction, then specify the type of node vibration. A. Three node vibration B. Two node vibration C. Single node vibration D. None of the above

Last Answer : B. Two node vibration

Description : Which of the following statements is/are true? A) Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction B) Shaft vibrates with maximum frequency when rotors ... C) Zero node behavior is observed in rotors rotating in opposite direction D) All of the above

Last Answer : A) Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction

Description : When heavy rotating masses are connected by a shaft and equal and opposite torques are applied to these masses (rotors) A. The rotors vibrate torsionally in the same direction. B. The rotors vibrate torsionally ... on the axis of shaft which remains undisturbed by vibration. D. Both (B) and (C)

Last Answer : D. Both (B) and (C)

Description : In the diagram shown below, if rotor X and rotor Z rotate in same direction and rotor Y rotates in opposite direction, then specify the no of degree of freedom vibration.a. Three degree of freedom vibration b. Two degree of freedom vibration c. Single degree of freedom vibration d. None of the above

Last Answer : b. Two degree of freedom vibration

Description : Which of the following statements is/are true? a. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction b. Shaft vibrates with maximum frequency when rotors ... c. Zero node behavior is observed in rotors rotating in opposite direction d. All of the above

Last Answer : a. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction

Description : Pick out the wrong statement. (A) The shear stress at the pipe (dia = D, length = L) wall in case of laminar flow of Newtonian fluids is (D/4L). ∆p (B) In the equation, T. gc = k. ... to motion (D) With increase in the Mach number >0.6, the drag co-efficient decreases in case of compressible fluids

Last Answer : (D) With increase in the Mach number >0.6, the drag co-efficient decreases in case of compressible fluids

Description : The force on a charged particle moving parallel to magnetic field lines is: w) in the direction of the field x) zero y) perpendicular to the field z) in the opposite direction of the field

Last Answer : ANSWER: X -- ZERO

Description : Longitudinal vibrations are said to occur when the particles of a body moves A Perpendicular to its axis B Parallel to its axis C In a circle about its axis D None of the mentioned

Last Answer : B Parallel to its axis

Description : The vibrations perpendicular to the shaft axis are known as A Transverse B Longitudinal C Torsional D None of the mentioned

Last Answer : A Transverse

Description : Longitudinal vibrations are said to occur when the particles of a body moves (A) Perpendicular to its axis B (B) Parallel to its axis (C) In a circle about its axis (D) None of the mentioned

Last Answer : (B) Parallel to its axis

Description : Longitudinal vibrations are said to occur when the particles of a body moves a) perpendicular to its axis b) parallel to its axis c) in a circle about its axis d) none of the mentioned

Last Answer : b) parallel to its axis

Description : Longitudinal vibrations are said to occur when the particles of a body moves a) perpendicular to its axis b) parallel to its axis c) in a circle about its axis d) none of the mentioned

Last Answer : b) parallel to its axis

Description : When the force acts at right angle to the direction of motion, what is the work done by the force -Physics 9th

Last Answer : Let F is the force applied and s is the displacement produce and the angle between force and displacement is θ The work done by this force is given as FW = Fs Cosθ Its unit is joule

Description : In vibration isolation system, if ω/ω n > 1, then the phase difference between the transmitted force and the disturbing force is A. 0° B. 90° C. 180° D. 270°

Last Answer : C. 180°

Description : A weight of 50 N is suspended from a spring of stiffness 4000N/m and subjected to a harmonic force of magnitude 60N and frequency 60 Hz. what will be the static displacement of the spring due to maximum applied force A. 0.015m B. 0.15 m C. 15 m D. 150m

Last Answer : B. 0.15 m

Description : Calculate damped natural frequency, if a spring mass damper system is subjected to periodic disturbing force of 30 N. Damping coefficient is equal to 0.76 times of critical damping coefficient and undamped natural frequency is 5 rad/sec A. 3.99 rad/sec B. 2.13 rad/sec C. 4.12 rad/sec D. 3.24 rad/sec

Last Answer : D. 3.24 rad/sec

Description : In vibration isolation system, if ω/ω n , then the phase difference between the transmitted force and the disturbing force is a) 0° b) 90° c) 180° d) 270°

Last Answer : c) 180°

Description : In vibration isolation system, if ω/ω n , then the phase difference between the transmitted force and the disturbing force is a) 0° b) 90° c) 180° d) 270

Last Answer : c) 180°

Description : In vibration isolation system, if ω/ω n > 1, then the phase difference between the transmitted force and the disturbing force is a) 0° b) 90° c) 180° d) 270°

Last Answer : c) 180°

Description : Untuned viscous damper ( houdaille Damper) is used with variable speed machine being control by ratio can be given by A) (damper inertia) / (main system inertia) B) (main system inertia) / (damper inertia) ... X damper inertia) / (main system inertia) D) (2 X main system inertia) / (damper inertia)

Last Answer : A) (damper inertia) / (main system inertia)

Description : Untuned viscous damper ( houdaille Damper) is used with variable speed machine being control by ratio can be given by A) (damper inertia) / (main system inertia) B) (main system inertia) / (damper inertia) ... X damper inertia) / (main system inertia) D) (2 X main system inertia) / (damper inertia)

Last Answer : A) (damper inertia) / (main system inertia)

Description : What is the shear stress acting along the neutral axis of triangular beam section, with base 60 mm and height 150 mm, when shear force of 30 kN acts? a. 15.36 N/mm2 b. 10.6 N/mm2 c. 8.88 N/mm2 d. Insufficient data

Last Answer : c. 8.88 N/mm2

Description : What is meant by critical damping coefficient? * 1 point (A) Frequency of damped free vibrations is less than zero (B). The motion is a periodic in nature (C). Both a. and b. (D). None of the above

Last Answer : (C). Both a. and b.

Description : The accelerometer is used as a transducer to measure earthquake in Richter scale. Its design is based on the principle that A Its natural frequency is very low in comparison to the frequency ... is equal to the frequency of vibration D Measurement of vibratory motion is without any reference point

Last Answer : C Its natural frequency is equal to the frequency of vibration

Description : What is meant by critical damping coefficient? A Frequency of damped free vibrations is less than zero B The motion is aperiodic in nature C Both a. and b. D None of the above

Last Answer : B The motion is aperiodic in nature

Description : The motion completed during one time period is known as _______. A period of vibration B cycle C frequency D all of the above

Last Answer : B cycle

Description : The velocity vector in a vector diagram for a harmonic motion A Lags the displacement vector by 180 0 B Lags the displacement vector by 90 0 C Leads the displacement vector by 90 0 D Leads the displacement vector by 180 0

Last Answer : C Leads the displacement vector by 90 0

Description : The equations of motion of a two degree of freedom system, are, in general: A. coupled B. linear C. uncoupled D. none of the above

Last Answer : A. coupled

Description : The motion of a system executing harmonic motion with one natural frequency is known as _______ A. principal mode of vibration B. natural mode of vibration C. both a. and b. D. none of the above

Last Answer : C. both a. and b.

Description : The velocity vector in a vector diagram for a harmonic motion A Lags the displacement vector by 180 0 B Lags the displacement vector by 90 0 C Leads the displacement vector by 90 0 D Leads the displacement vector by 180 0

Last Answer : C Leads the displacement vector by 90 0

Description : The equation of motion for a vibrating system with viscous damping is d 2 x/dt 2 + c/m X dx/dt + s/m X x = 0 If the roots of this equation are real, then the system will be A. over damped B. under damped C. critically damped D. none of the mentioned

Last Answer : A. over damped

Description : The system which requires two coordinates independently to describe its motion completely is called a--- A. 2 DOF B. SDOF C. DOF D. None of above

Last Answer : A. 2 DOF

Description : When a body moves with simple harmonic motion, the product of its periodic time and frequency is equal to A. Zero B. One C. π/2 D. 2π

Last Answer : B. One

Description : The maximum acceleration of a particle moving with simple harmonic motion is ____. A. ω B. ω.r C. ω / 2 π D. 2 π / ω

Last Answer : B. ω.r