Which formula is used to calculate mass moment of inertia (I G ) of a circular
rim about the axis through centre of gravity?
a. mr 2 /2b. mr 2 /12
c. mr 2 /4
d. mr 2

1 Answer

Answer :

d. mr 2

Related questions

Description : The moment of inertia of a hollow circular section whose external diameter is 8 cm and interial diameter is 6 cm about the axis passing through its centre is a.66.8 cm4 b.137.5 cm4 c.550 cm4 d.33.4 cm4 e.275 cm4

Last Answer : b. 137.5 cm4

Description : If the static deflection is 1.665×10 -3 m, calculate the critical speed of the shaft in rps. Centre of disc at 0.25m away from centre of axis of shaft. A. 8.64 B. 9.64 C. 10.64 D. 12.2

Last Answer : D. 12.2

Description : The depth of centre of pressure (h) for a vertically immersed surface from the liquid surface is given by (where IG = Moment of inertia of the immersed surface about horizontal axis through its centre of gravity, A = Area of immersed surface, ... (IG/ ) - (B) (IG/ ) - (C) ( /IG) + (D) (IG/ ) +

Last Answer : Answer: Option D

Description : Calculate the Polar moment of inertia in m 4 of a single motor system from the following data: C = 8 GN/m 2 , L=9m, I = 600 Kg-m 2 , f=10 Hz a) 0.00027b) 0.00032 c) 0.00045 d) 0.00078

Last Answer : a) 0.00027

Description : The mass moment of inertia of a solid circular disk is given by (A) mR 2 /2 (B) mR 2 /3 (C) 2mR 2 /3 (D) mR 2 /4

Last Answer : (A) mR 2 /2

Description : If the particle of a body vibrate along a circular arc, whose centre lies on the axis of the shaft then the body is said to have A) Transverse vibration B) Longitudinal vibration C) Torsional vibration D) None of the above

Last Answer : C) Torsional vibration

Description : For a two-rotor system, the length of one shaft (A) is twice the other (B), then what is the relation between the mass moment of inertia of the shafts. A 2I(A) = I(B) B I(A) = 2I(B) C I(A) = I(B) D 2I(A) = 3I(B)

Last Answer : A 2I(A) = I(B)

Description : Increasing which of the following factor would result in increase of free torsional vibration? A. Radius of gyration B. Mass moment of inertia C. Polar moment of inertia D. Length

Last Answer : C. Polar moment of inertia

Description : An increase in the mass moment of inertia results in ________ in vibration frequency. A. increase B. decrease C. unchanged D. none of the above

Last Answer : B. decrease

Description : If the mass moment of inertia is increased to four times, then what will be the effect on free torsional vibrations of a single motor system? a) Increases 4 times b) Increases 2 times c) Decreases 4 times d) Decreases 2 times

Last Answer : d) Decreases 2 times

Description : Which of the following relation is correct regarding free torsional vibrations of a single motor system? a) Independent of modulus of rigidity b) Independent of polar moment of inertia c) Dependent on mass moment of inertia d) Independent of length of shaft

Last Answer : c) Dependent on mass moment of inertia

Description : Increasing which of the following factor would result in increase of free torsional vibration? a) Radius of gyration b) Mass moment of inertiac) Polar moment of inertia d) Length

Last Answer : c) Polar moment of inertia

Description : If a mass whose moment of inertia is Ic/3 is placed at the free end and the constraint is assumed to be of negligible mass, then the kinetic energy is ______ a) 1/6 Icω 2 b) 1/2Icω 2 c) 1/3Icω 2 d) 1/12Icω 2

Last Answer : a) 1/6 Icω 2

Description : The unbalanced force caused by an eccentric mass m rotating at an angular speed v and located at a distance r from the axis of rotation is 2 a. mr ω 2 b. mgω 2 c. mr ω 2

Last Answer : c. mr ω 2

Description : The moment of inertia of a rectangular section of width and depth about an axis passing  through C.G. and parallel to its width is  (A) BD²/6  (B) BD3 /6  (C) BD3 /12  (D) B²D/6 

Last Answer : (C) BD3 /12 

Description : The moment of inertia of a thin ring about an axis perpendicular to plane of ring is a.1/3 Mr3 b.Mr2 c.Mr d.Mr3 e.1/2 Mr3

Last Answer : b. Mr2

Description : If the polar moment of inertia is increased to four times, then what will be the effect on free torsional vibrations of a single motor system? A. Increases 4 times B. Increases 2 times C. Decreases 4 times D. Decreases 2 times

Last Answer : B. Increases 2 times

Description : If the polar moment of inertia is increased to four times, then what will be the effect on free torsional vibrations of a single motor system? a) Increases 4 times b) Increases 2 times c) Decreases 4 times d) Decreases 2 times

Last Answer : b) Increases 2 times

Description : Free torsional vibrations of a single motor system increases with increase in polar moment of inertia. a) True b) False

Last Answer : b) False

Description : The static deflection of a spring under gravity, when a mass of 1 kg is suspended from it, is 1 mm. Assume the acceleration due to gravity g = 10 m/s^2. The natural frequency of this spring-mass system (in rad/s) is A 100 B 150 C 200 D 250

Last Answer : A 100

Description : The ratio of moment of inertia of a circular body about x axis to that about y axis is a.? b.? c.1?4 d.1 e.

Last Answer : e. 1

Description : Calculate the moment of inertia about the axis parallel to welds and shift it to CG by considering thickness of welds t. a) tɜ+2000t b) None of the listed c) 250000 t d) 125000 t

Last Answer : c) 250000 t

Description : Calculate damped natural frequency, if a spring mass damper system is subjected to periodic disturbing force of 30 N. Damping coefficient is equal to 0.76 times of critical damping coefficient and undamped natural frequency is 5 rad/sec A. 3.99 rad/sec B. 2.13 rad/sec C. 4.12 rad/sec D. 3.24 rad/sec

Last Answer : D. 3.24 rad/sec

Description : The equation of motion for spring mass system includes A. Inertia Force B. Spring Force C. Both D. Gravitational force

Last Answer : C. Both

Description : Moment of Inertia of triangular section about an axis passing through its base is given by a.bh3/12 b.bh3/32 c.bh3/36 d.None of the above e.Tapered bearing

Last Answer : a. bh3/12

Description : The moment of inertia of a body does not depend upon a.The angular velocity of the body b.Mass of the body c.The distribution of mass in the body d.The axis of rotation of the body e.None of the above

Last Answer : a. The angular velocity of the body

Description : The moment of inertia of a body does not depend upon its – (1) axis of rotation (2) angular velocity (3) form of mass (4) distribution of mass

Last Answer : (2) angular velocity Explanation: Moment of inertia is the mass property of a rigid body that determines the torque needed for a desired angular acceleration about an axis of rotation. Moment of inertia ... of moments of inertia of the masses making up the whole object, under the same conditions.

Description : The moment of inertia of a body does not depend upon its (1) axis of rotation (2) angular velocity (3) form of mass (4) distribution of mass

Last Answer : angular velocity

Description : The rotational effect of a force on a body about an axis of rotation is described in terms of the (1) Centre of gravity (2) Centripetal force (3) Centrifugal force (4) Moment of force

Last Answer : (4) Moment of force Explanation: The rotational effect of a force on a body about an axis of rotation is described in terms of the Moment of force.

Description : The rotational effect of a force on a body about an axis of rotation is described in terms of the (1) Centre of gravity (2) Centripetal force (3) Centrifugal force (4) Moment of force

Last Answer : (4) Moment of force Explanation: The rotational effect of a force on a body about an axis of rotation is described in terms of the Moment of force.

Description : Calculate the value of critical damping coefficient if a vibrating system has mass of 4kg and stiffness of 100N/m A 20 N-sec/m B 40 N-sec/m C 60 N-sec/m D 80 N-sec/m

Last Answer : B 40 N-sec/m

Description : Calculate damping ratio if mass = 200Kg, ω = 20rad/s and damping coefficient = 800 N/m/s A. 0.03 B. 0.04 C. 0.05 D. 0.06

Last Answer : A. 0.03

Description : A cantilever shaft having 50 mm diameter and length of 300 mm has a disc of mass 100 kg at its free enD. The Young’s modulus for the shaft material is 200 GN/m 2 . Calculate the natural longitudinal frequency in Hz. A. 575B. 625 C. 525 D. 550

Last Answer : A. 575

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m B. 80 x 10 3 N-s/m C. 42 x 10 3 N-s/m D. None of the above

Last Answer : C. 42 x 10 3 N-s/m

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m b. 80 x 10 3 N-s/m c. 42 x 10 3 N-s/m d. None of the above

Last Answer : c. 42 x 10 3 N-s/m

Description : A body of mass 20 kg is suspended from a spring which deflects 20mm under this load. Calculate the frequency of free vibrations in Hz. a) 3.5 b) 5 c) 6 d) 7

Last Answer : a) 3.5

Description : Calculate damping ratio from the following data: mass = 200Kg ω = 20rad/s damping coefficient = 1000 N/m/s a) 0.03 b) 0.04 c) 0.05 d) 0.06

Last Answer : b) 0.04

Description : Calculate damping ratio from the following data: mass = 200Kg ω = 20rad/s damping coefficient = 800 N/m/s a) 0.03 b) 0.04 c) 0.05 d) 0.06

Last Answer : a) 0.03

Description : Calculate critical damping coefficient in N/m/s from the following data: mass = 100Kg ω = 40rad/s a) 25,132 b) 26,132 c) 27,132 d) 28,132

Last Answer : a) 25,132

Description : Calculate critical damping coefficient in Ns/m from the following data. mass = 200Kg ω = 20rad/sa) 25,132 b) 26,132 c) 27,132 d) Not possible

Last Answer : d) Not possible

Description : A cantilever shaft having 50 mm diameter and length of 300 mm has a disc of mass 100 kg at its free end. The Young’s modulus for the shaft material is 200 GN/m 2 . Calculate the natural longitudinal frequency in Hz. a) 575 b) 625 c) 525 d) 550

Last Answer : a) 575

Description : A cantilever shaft has a diameter of 6 cm and the length is 40cm, it has a disc of mass 125 kg at its free end. The Young’s modulus for the shaft material is 250 GN/m2. Calculate the static deflection in nm. a) 0.001 b) 0.083c) 1.022 d) 0.065

Last Answer : a) 0.001

Description : The time period of a simple pendulum does not depend upon the mass of the body suspended at the free end of the string. This statement is known as ___________ . (A) law of gravity (B) law of mass (C) law of isochronism (D) law of length

Last Answer : (B) law of mass

Description : Often an unbalance of forces is produced in rotary or reciprocating machinery due to the ______ * 1 point (A) Centripetal forces (B) Centrifugal forces (C) Friction forces (D) Inertia forces

Last Answer : (D) Inertia forces

Description : Untuned viscous damper ( houdaille Damper) is used with variable speed machine being control by ratio can be given by A) (damper inertia) / (main system inertia) B) (main system inertia) / (damper inertia) ... X damper inertia) / (main system inertia) D) (2 X main system inertia) / (damper inertia)

Last Answer : A) (damper inertia) / (main system inertia)

Description : Untuned viscous damper ( houdaille Damper) is used with variable speed machine being control by ratio can be given by A) (damper inertia) / (main system inertia) B) (main system inertia) / (damper inertia) ... X damper inertia) / (main system inertia) D) (2 X main system inertia) / (damper inertia)

Last Answer : A) (damper inertia) / (main system inertia)

Description : f the length inertia is decreased to nine times, then what will be the effect on free torsional vibrations of a single motor system? a) Increases 3 times b) Increases 9 times c) Decreases 9 times d) Decreases 3 times

Last Answer : a) Increases 3 times

Description : The natural frequency of a spring-mass system on earth is ωn. The natural frequency of this system on the moon (g of moon = g of earth /6) is * 1 point (A) ωn (B) 0.408ωn (C) 0.204ωn (D) 0.167ωn

Last Answer : (A) ωn

Description : The natural frequency of a spring-mass system on earth is ω n . The natural frequency of this system on the moon (g moon = g earth /6) is a) ω n b) 0.408ω n c) 0.204ω n d) 0.167ω n

Last Answer : a) ω n

Description : The natural frequency of a spring-mass system on earth is ω n . The natural frequency of this system on the moon (g moon = g earth /6) is a) ω n b) 0.408ω n c) 0.204ω n d) 0.167ω n

Last Answer : a) ω n