Calculate the moment of inertia about the axis parallel to welds and shift it to CG by considering

thickness of welds t.

a) tɜ+2000t

b) None of the listed

c) 250000 t

d) 125000 t

1 Answer

Answer :

c) 250000 t

Related questions

Description : While calculating bending stress in the following welded joints which of the welds moment of inertia can be neglected? a) 1 b) None of the listed c) Both 1 & 3 d) Both 2 & 4

Last Answer : b) None of the listed

Description : A bracket is shown welded to a vertical column by means of two fillet welds. The bending stress induced in the welds can be given by a) My/I b) 2My/I c) My/2I d) None of the listed

Last Answer : a) My/I

Description : Find the bending stress in the top weld is if thickness of weld is t. Given P=15kN and e=120mm. a) 230/t b) 360/t c) 200/t d) None of the listed

Last Answer : b) 360/t

Description : Calculate the shaft diameter on rigidity basis if torsional moment is 196000N-mm, length of shaft is 1000mm. Permissible angle of twist per meter is 0.5’ and take G=79300N/mm2. a) None of the listed b) 41.2mm c) 35.8mm d) 38.8mm

Last Answer : b) 41.2mm

Description : Parallel fillet welds are under (i) Shear stress (ii)Compressive stress (iii)Tensile stress (iv)None

Last Answer : (i) Shear stress

Description : Parallel fillet welds are under  Shear and bending stresses  Compressive and torsion shear stresses  Tensile and compressive stresses  None

Last Answer :  None

Description : If a circular shaft is welded to the plate by means of circumferential fillet, then the shaft is subjected to torsional moment M. If throat of weld is t, then torsional shear stress is given by a) M/2πtr2 b) M/πtr2 c) M/4πtr2 d) None of the listed

Last Answer : a) M/2πtr2

Description : Relation between throat and leg for a parallel fillet weld is a) t =h Cos (45’) b) h =t Cos (45’) c) h= t d) None of the listed

Last Answer : a) t =h Cos (45’)

Description : Which formula is used to calculate mass moment of inertia (I G ) of a circular rim about the axis through centre of gravity? a. mr 2 /2b. mr 2 /12 c. mr 2 /4 d. mr 2

Last Answer : d. mr 2

Description : Transverse fillet welds are under (i) Bending and shear stresses (ii)Compressive and torsion shear stresses (iii)Tensile and compressive stresses (iv)None

Last Answer : (iv)None

Description : Transverse fillet welds are under (i) Shear stress (ii) Compressive stress (iii) Tensile stress

Last Answer : (iii) Tensile stress

Description : Butt welds are under (i) Shear stress (ii) Compressive stress (iii) Tensile stress

Last Answer : (iii) Tensile stress

Description : Magnetic crack detection method in the welds is destructible examination. a) True b) False

Last Answer : b) False

Description : A flywheel of moment of inertia 9.8kgm 2 fluctuates by 30 rpm for a fluctuation in energy of 1936 joules. The means speed of flywheel is (in rpm) 1. 600 2. 900 3. 968 4. 2940

Last Answer : 1. 600

Description : The mass moment of inertia of a solid circular disk is given by (A) mR 2 /2 (B) mR 2 /3 (C) 2mR 2 /3 (D) mR 2 /4

Last Answer : (A) mR 2 /2

Description : Polar moment of inertia is a.Applicable to masses whereas moment of inertia is applicable to area only b.The moment of inertia for an area ralative to a line or axis which is out the plane of area ... The moment of inertia for an area relative to a line or axis perpendicular to the plane of the area

Last Answer : e. The moment of inertia for an area relative to a line or axis perpendicular to the plane of the area

Description : The moment of inertia of a semi-circle of radius r with respect to a centroidal axis parallel to the diameter is a.0.33 r2 b.0.11 r2 c.0.055 r2 d.0.05 r2 e.0.22 r2

Last Answer : b. 0.11 r2

Description : The moment of inertia of a rectangular section of width and depth about an axis passing  through C.G. and parallel to its width is  (A) BD²/6  (B) BD3 /6  (C) BD3 /12  (D) B²D/6 

Last Answer : (C) BD3 /12 

Description : Calculate the force acting on the each pin in flexible coupling if torque transmitted is 397N-m and PCD=120mm with number of pins 6. a) 1400.3N b) 1102.8N c) 1320.3N d) None of the listed

Last Answer : b) 1102.8N

Description : If 8 bolts are emplaced in a clamp coupling with shaft diameter 80mm d, calculate the tensile force on each bolt if coefficient of friction is 0.3 and torque transmitted is 4000N-m. a) 51234.4N b) 45968.3N c) 41666.7N d) None of the listed

Last Answer : c) 41666.7N

Description : When the shaft is subjected to pure torsional moment, the torsional stress is given by? a) None of the listed b) 32M/πdɜ c) 16M/πdɜ d) 8M/πdɜ

Last Answer : c) 16M/πdɜ

Description : When the shaft is subjected to pure bending moment, the bending stress is given by? a) None of the listed b) 32M/πdɜ c) 16M/πdɜ d) 8M/πdɜ

Last Answer : b) 32M/πdɜ

Description : When the shaft is subjected to pure torsional moment, the torsional stress is given by? a) None of the listed b) 32M/πdɜ c) 16M/πdɜ d) 8M/πdɜ

Last Answer : c) 16M/πdɜ

Description : When the shaft is subjected to pure bending moment, the bending stress is given by? a) None of the listed b) 32M/πdɜ c) 16M/πdɜ d) 8M/πdɜ

Last Answer : b) 32M/πdɜ

Description : Find the shear stress in a flange at the junction of hub in rigid flanged coupling if torsional moment is 2980N-m and diameter of hub being 125mm. Also the thickness of flange is 25mm. a) 6.77N/mm2 b) 10.24N/mm2 c) 4.84N/mm2 d) 4.22N/mm2

Last Answer : c) 4.84N/mm2

Description : The length of each of the two equal sides of a parallel fillet weld is called a) Leg b) Throat c) Arm d) None of the listed

Last Answer : a) Leg

Description : Which of the following formulae is used to calculate tangential stress, when a member is subjected to stress in mutually perpendicular axis and accompanied by a shear stress? a. [(σ x - σ y )/2 ]sin θ - τ cos 2θ b. [(σ x - ... τ cos 2θ c. [(σ x - σ y )/2 ]sin θ - τ 2 cos θ d. None of the above

Last Answer : c. [(σ x – σ y )/2 ]sin θ – τ 2 cos θ

Description : The shear plane in case of bolts should (a) be across threaded portion of shank (b) be parallel to axis of bolt (c) be normal to threaded portion of shank (d) never be across the threaded portion (e) none of the above.

Last Answer : (d) never be across the threaded portion

Description : The piston rod of a hydraulic cylinder exerts an operating force of 10kN. The allowable stress in the cylinder is 45N/mm². Calculate the thickness of the cylinder using Lame's equation. Diameter of the cylinder is 40mm and ... is 10MPa. a) 2.05mm b) 4.2mm c) 5.07mm d) None of the listed

Last Answer : c) 5.07mm

Description : The bending moment ‘M’ and a torque ‘T’ is applied on a solid circular shaft. If the maximum bending stress equals to maximum shear stress developed, then ‘M’ is equal to (A) T/2 (B) T (C) 2 T (D) 4 T

Last Answer : (A) T/2

Description : The ratio of moment of inertia of a circular body about x axis to that about y axis is a.? b.? c.1?4 d.1 e.

Last Answer : e. 1

Description : Moment of Inertia of triangular section about an axis passing through its base is given by a.bh3/12 b.bh3/32 c.bh3/36 d.None of the above e.Tapered bearing

Last Answer : a. bh3/12

Description : The moment of inertia of a thin ring about an axis perpendicular to plane of ring is a.1/3 Mr3 b.Mr2 c.Mr d.Mr3 e.1/2 Mr3

Last Answer : b. Mr2

Description : The moment of inertia of a hollow circular section whose external diameter is 8 cm and interial diameter is 6 cm about the axis passing through its centre is a.66.8 cm4 b.137.5 cm4 c.550 cm4 d.33.4 cm4 e.275 cm4

Last Answer : b. 137.5 cm4

Description : The moment of inertia of a body does not depend upon a.The angular velocity of the body b.Mass of the body c.The distribution of mass in the body d.The axis of rotation of the body e.None of the above

Last Answer : a. The angular velocity of the body

Description : ______ is the perpendicular distance between point of application of force and axis of rotation. (1) Moment arm (2) Moment of Inertia (3) Altitude (4) Base

Last Answer : (1) Moment arm Explanation: The magnitude of the moment of force acting about a point or axis is directly proportional to the distance of the force from the point or axis.

Description : The moment of inertia of a body does not depend upon its – (1) axis of rotation (2) angular velocity (3) form of mass (4) distribution of mass

Last Answer : (2) angular velocity Explanation: Moment of inertia is the mass property of a rigid body that determines the torque needed for a desired angular acceleration about an axis of rotation. Moment of inertia ... of moments of inertia of the masses making up the whole object, under the same conditions.

Description : The locus of the moment of inertia about inclined axes to the principal axis, is  (A) Straight line  (B) Parabola  (C) Circle  (D) Ellipse

Last Answer : (D) Ellipse

Description : If M, I, R, E, F, and Y are the bending moment, moment of inertia, radius of curvature, modulus of  elasticity stress and the depth of the neutral axis at section, then  (A) M/I = R/E = F/Y (B) I/M = R/E = F/Y (C) M/I = E/R = E/Y (D) M/I = E/R = Y/F

Last Answer : (C) M/I = E/R = E/Y

Description : At any point of a beam, the section modulus may be obtained by dividing the moment of inertia of  the section by  (A) Depth of the section  (B) Depth of the neutral axis  (C) Maximum tensile stress at the section  (D) Maximum compressive stress at the section

Last Answer : (B) Depth of the neutral axis 

Description : Pick up the correct statement from the following:  (A) The moment of inertia is calculated about the axis about which bending takes place  (B) If tensile stress is less than axial ... tensile stress is equal to axial stress, the section experiences compressive stress  (D) All the above 

Last Answer : (D) All the above 

Description : In a shaft shear stress intensity at a point is not (A) Directly proportional to the distance from the axis (B) Inversely proportional to the distance from the axis (C) Inversely proportional to the polar moment of inertia (D) Directly proportional to the applied torque

Last Answer : (B) Inversely proportional to the distance from the axis

Description : If is the shear force at a section of an I-joist, having web depth and moment of inertia about its neutral axis, the difference between the maximum and mean shear stresses in the web is, (A) Sd²/8I (B) Sd²/12I (C) Sd²/16I (D) Sd²/24I

Last Answer : (D) Sd²/24I

Description : The depth of centre of pressure (h) for a vertically immersed surface from the liquid surface is given by (where IG = Moment of inertia of the immersed surface about horizontal axis through its centre of gravity, A = Area of immersed surface, ... (IG/ ) - (B) (IG/ ) - (C) ( /IG) + (D) (IG/ ) +

Last Answer : Answer: Option D

Description : A vertical column has two moments of inertia (i.e. Ixx and Iyy ). The column will tend to buckle in the direction of the (a) axis of load (b) perpendicular to the axis of load (c) maximum moment of inertia (d) minimum moment of inertia

Last Answer : (d) minimum moment of inertia

Description : A column has moment of inertia about X-X and Y-Y axis as follows IXX=4234.4 mm4 IYY=236.3 mm4 This column will buckle about (a) X-X axis (b) Y-Y axis (c) It depends upon the applied load (d) None of these

Last Answer : (b) Y-Y axis

Description : Which of the following relations is used to represent theorem of perpendicular axes? (H = Vertical axis, I = Moment of inertia and K = Radius of gyration) a. IPQ = Ixx + AH2 b. IPQ = Ixx + Ak2 c. Izz = Ixx + Iyy d. Izz + Ixx + Iyy = 0

Last Answer : c. Izz = Ixx + Iyy

Description : State and explain perpendicular axis theorem of moment of Inertia.

Last Answer : Perpendicular axis theorem: It states MI of a plane lamina about an axis perpendicular to the plane of lamina and passing through the centroid of the lamina is equal to the addition of the moments of ... OY are mutually perpendicular and OZ is the axis perpendicular to plane XY of the lamina.

Description : The moment of inertia of a body does not depend upon its (1) axis of rotation (2) angular velocity (3) form of mass (4) distribution of mass

Last Answer : angular velocity

Description : Define ‘Moment of inertia’ and write mathematical expression of square and quarter circle with both axis.

Last Answer : Moment of inertia of a body about any axis is equal to the product of the area of the body and square of the distance of its centroid from that axis.  OR  Moment of inertia of a body about any axis is defined as the sum of second moment of all elementary areas about that axis.