Asymptotic conditions is reached, when for a fluid flowing in laminar

flow through a long tube

(A) Exit-fluid temperature > wall temperature

(B) Exit fluid temperature < wall temperature

(C) Exit fluid temperature = wall temperature

(D) Graetz number > 100

1 Answer

Answer :

(C) Exit fluid temperature = wall temperature

Related questions

Description : The velocity profile for a Bingham plastic fluid flowing (under laminar conditions) in a pipe is (A) Parabolic (B) Flat (C) Flat near the wall and parabolic in the middle (D) Parabolic near the wall and flat in the middle

Last Answer : (D) Parabolic near the wall and flat in the middle

Description : Convective heat transfer co-efficient in case of fluid flowing in tubes is not affected by the tube length/diameter ratio, if the flow is in the __________ zone. (A) Laminar (B) Transition (C) Both 'a' & 'b' (D) Highly turbulent

Last Answer : (D) Highly turbulent

Description : The Graetz number is concerned with the (A) Mass transfer between a gas and a liquid (B) Absorption with chemical reaction (C) Heat transfer in turbulent flow (D) Heat transfer in laminar flow

Last Answer : (D) Heat transfer in laminar flow

Description : The characteristic dimensionless groups for heat transfer to a fluid flowing through a pipe in laminar flow are (A) Re.Gz (B) Nu, Pr (C) Nu, Pr, Re (D) Nu, Gz

Last Answer : (D) Nu, Gz

Description : A fluid is flowing inside the inner tube of a double pipe heat exchanger with diameter 'd'. For a fixed mass flow rate, the tube side heat transfer co￾efficient for turbulent flow conditions is proportional to (A) d 0.8 (B) d -0.2 (C) d -1 (D) d -1.8

Last Answer : (B) d -0.2

Description : Experimental study of laminar fluid flow through a circular tube was conducted by (A) Reynolds (B) Hagen and Poiseuille (C) Pascal (D) Blake-Plummer

Last Answer : (B) Hagen and Poiseuille

Description : Heat exchangers operating, when the asymptotic range is reached, (A) Provide very large heat transfer co-efficient (B) Results in making part of the heating surface inactive (C) Results in abruptly increased velocity (D) None of these

Last Answer : (B) Results in making part of the heating surface inactive

Description : Pick out the wrong statement. (A) The shear stress at the pipe (dia = D, length = L) wall in case of laminar flow of Newtonian fluids is (D/4L). ∆p (B) In the equation, T. gc = k. ... to motion (D) With increase in the Mach number >0.6, the drag co-efficient decreases in case of compressible fluids

Last Answer : (D) With increase in the Mach number >0.6, the drag co-efficient decreases in case of compressible fluids

Description : Fanning friction factor for laminar flow of fluid in a circular pipe is (A) Not a function of the roughness of pipe wall (B) Inversely proportional to Reynolds number (C) Both (A) & (B) (D) Neither (A) nor (B)

Last Answer : (C) Both (A) & (B)

Description : For a laminar flow of fluid in a circular tube, 'h1 ' is the convective heat transfer co-efficient at velocity 'V1 '. If the velocity is reduced by half and assuming the fluid properties are constant, the new convective heat transfer co-efficient is (A) 1.26 h1 (B) 0.794 h1 (C) 0.574 h1 (D) 1.741 h1

Last Answer : (B) 0.794 h1

Description : The distribution of shear stress in a stream of fluid in a circular tube is (A) Linear with radius for turbulent flow only (B) Linear with radius for laminar flow only (C) Linear with radius for both laminar & turbulent flow (D) Parabolic with radius for both laminar & turbulent flow

Last Answer : (C) Linear with radius for both laminar & turbulent flow

Description : __________ is used for measuring the static pressure exerted on the wall by a fluid flowing parallel to the wall in a pipeline. (A) Venturimeter (B) Pressure gauge (C) Pitot tube (D) Orificemeter

Last Answer : (C) Pitot tube

Description : Where does the maximum stress occur in case of laminar flow of incompressible fluid in a closed conduit of diameter 'd'? (A) At the centre (B) At d/4 from the wall (C) At the wall (D) At d/8 from the wall

Last Answer : (C) At the wall

Description : In a co-current double pipe heat exchanger used for condensing saturated steam over the inner tube, if the entrance and exit conditions of the coolant are interchanged, then the rate of condensation ... Decrease (C) Remain unchanged (D) Either increase or decrease; depends on the coolant flow rate

Last Answer : (C) Remain unchanged

Description : The pressure drop per unit length for laminar flow of fluid through a long pipe is proportional to (where, A = cross-sectional area of the pipe & D = Diameter of the pipe) (A) A (B) D (C) 1/A (D) 1/A2

Last Answer : (C) 1/A

Description : Transition from laminar flow to turbulent flow is aided by the (A) Surface roughness and curvature (i.e. sharp corners) (B) Vibration (C) Pressure gradient and the compressibility of the flowing medium (D) All (A), (B) & (C)

Last Answer : (D) All (A), (B) & (C)

Description : Pick out the wrong statement. (A) Momentum transfer in laminar flow results from velocity gradient (B) A fluid in equilibrium is not free from shear stress (C) The viscosity of a non-Newtonian fluid is a function of temperature only (D) Both (B) and (C)

Last Answer : (D) Both (B) and (C)

Description : The frictional resistance in laminar flow does not depend on the (A) Area of surface in contact (B) Flow velocity (C) Fluid temperature (D) Pressure of flow

Last Answer : (A) Area of surface in contact

Description : Pick out the correct statement pertaining to the flow through a converging-diverging tube. (A) The value of Mach number is always unity at the throat (B) No shock wave develops in the tube ... the converging portion of the tube, the density increases in the downstream direction (D) None of these

Last Answer : (B) No shock wave develops in the tube when the Mach number at exit is greater than unity

Description : The Nusselt number for fully developed (both thermally and hydrodynamically) laminar flow through a circular pipe, where the wall heat flux is constant, is (A) 2.36 (B) 4.36 (C) 120.36 (D) Dependent on NRe only

Last Answer : (B) 4.36

Description : In laminar flow through a round tube, the discharge varies (A) Linearly as the viscosity (B) Inversely as the pressure drop (C) Inversely as the viscosity (D) As the square of the radius

Last Answer : (C) Inversely as the viscosity

Description : In case of laminar flow of fluid through a circular pipe, the (A) Shear stress over the cross-section is proportional to the distance from the surface of the pipe (B) Surface of velocity distribution is a ... occurs at a radial distance of 0.5 r from the centre of the pipe (r = pipe radius)

Last Answer : (B) Surface of velocity distribution is a paraboloid of revolution, whose volume equals half the volume of circumscribing cylinder

Description : For laminar flow of Newtonian fluids through a circular pipe, for a given pressure drop and length & diameter of pipe, the velocity of fluid is proportional to (where, μ = fluid viscosity ) (A) μ (B) 1/μ (C) √μ (D) 1/√μ

Last Answer : (B) 1/μ

Description : What is the ratio of total kinetic energy of fluid passing per second to the value obtained on the basis of average velocity (for laminar flow through a circular pipe)? (A) 0.5 (B) 1 (C) 1.5 (D) 2

Last Answer : (D) 2

Description : Which of the following equations is valid for laminar flow of a fluid through packed bed? (A) Fanning equation (B) Kozeny - Karman equation (C) Hagen-Poiseuille equation (D) Blake-Plummer equation

Last Answer : (B) Kozeny - Karman equation

Description : For laminar flow of a fluid through a packed bed of spheres of diameter d, the pressure drop per unit length of bed depends upon the sphere diameter as (A) d (B) d 2 (C) d 4 (D) d

Last Answer : (D) d

Description : Transition from laminar flow to turbulent flow in fluid flow through a pipe does not depend upon the (A) Length of the pipe (B) Diameter of the pipe (C) Density of the fluid (D) Velocity of the fluid

Last Answer : (A) Length of the pipe

Description : The loss of head due to viscosity for laminar flow in pipes is (where d = Diameter of pipe, l = Length of pipe, v w = Specific weight of the flowing liquid) (A) 4 (B) 8 (C) 16 (D) 32

Last Answer : Answer: Option D

Description : Heat transfer in the laminar sub-layer in case of a liquid flowing through a pipe, is mostly by (A) Eddies current (B) Conduction (C) Convection (D) None of these

Last Answer : (B) Conduction

Description : Two fluids are flowing through two similar pipes of the same diameter. The Reynold's number is same. For the same flow rate if the viscosity of a fluid is reduced to half the value of the ... (A) Increase (B) Decrease (C) Remain unchanged (D) Data insufficient to predict relative pressure drop

Last Answer : (B) Decrease

Description : Consider the following statements in respect of steady laminar flow through a circular pipe: 1. Shear stress is zero on the central axis of the pipe 2. Discharge varies directly with the viscosity of the fluid 3. Velocity is maximum at the ... 2 , 3 & 4 (b) 1 & 3 only (c) 2 & 4 only (d)3 & 4 only

Last Answer : (b) 1 & 3 only

Description : Laminar flow of a Newtonian fluid ceases to exist, when the Reynolds number exceeds (A) 4000 (B) 2100 (C) 1500 (D) 3000

Last Answer : (B) 2100

Description : A Rotameter through which air at room temperature and atmospheric pressure is flowing gives a certain reading for a flow rate of 100 cc/sec. If helium (molecular weight 4) is used and Rotameter shows the same reading, the flow rate (cc/sec) is (A) 26 (B) 42 (C) 269 (D) 325

Last Answer : (C) 269

Description : he pressure drop per unit length of pipe incurred by a fluid 'X' flowing through pipe is Δp. If another fluid 'Y' having both the specific gravity & density just double of that of fluid 'X', flows through the same pipe ... then the pressure drop in this case will be (A) Δp (B) 2Δp (C) Δp 2 (D) Δp/2

Last Answer : (B) 2Δp

Description : essure drop (Δp) for a fluid flowing in turbulent flow through a pipe is a function of velocity (V) as (A) V1.8 (B) V-0.2 (C) V2.7 (D) V

Last Answer : (D) V

Description : Bulk of the convective heat transfer resistance from a hot tube surfaceto the fluid flowing in it, is (A) In the central core of the fluid (B) Uniformly distributed throughout the fluid (C) Mainly confined to a thin film of fluid near the surface (D) None of these

Last Answer : (C) Mainly confined to a thin film of fluid near the surface

Description : Nature of fluid flow during the opening of a valve in a pipeline is (A) Laminar (B) Unsteady (C) Steady (D) Uniform

Last Answer : (B) Unsteady

Description : The ratio of average fluid velocity to the maximum velocity in case of laminar flow of a Newtonian fluid in a circular pipe is (A) 0.5 (B) 1 (C) 2 (D) 0.66

Last Answer : (A) 0.5

Description : In fluid flow, the boundary layer separation cannot occur (A) In case of boundaries experiencing form drag (B) At points of abrupt changes in the flow directions (C) In laminar flow (D) None of theseIn ... B) At points of abrupt changes in the flow directions (C) In laminar flow (D) None of these

Last Answer : (D) None of these

Description : Pick out the correct statement. (A) A forced vortex occurs when fluid rotates as a solid about an axis (B) In laminar flow, Newton's law of viscosity does not apply (C) A free vortex occurs, when fluid rotates as a solid (D) In turbulent flow, there are neither cross-currents nor eddies

Last Answer : (A) A forced vortex occurs when fluid rotates as a solid about an axis

Description : Pick out the wrong statement. (A) The form drag is dependent upon the occurrence of a wake (B) The shear stress at any given cross-section of a pipe for steady flow (either laminar or turbulent ... of viscosity (D) Existence of the boundary layer in fluid flow is because of viscosity of the fluid

Last Answer : (C) An ideal fluid is the one, which has negligible surface tension and obeys the Newton's law of viscosity

Description : The fluid velocity varies as the cube of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop for __________ fluid. (A) Newtonian (B) Pseudo-plastic (C) Dilatent (D) Bingham plastic

Last Answer : (B) Pseudo-plastic

Description : In turbulent flow, the (A) Fluid particles move in an orderly manner (B) Momentum transfer is on molecular scale only (C) Shear stress is caused more effectively by cohesion than momentum transfer (D) Shear stresses are generally larger than in a similar laminar flow

Last Answer : (D) Shear stresses are generally larger than in a similar laminar flow

Description : The fluid velocity varies as the square of the cylindrical pipe diameter, in case of steady state laminar flow at constant pressure drop, for __________ fluid. (A) Newtonian (B) Dilatant (C) Pseudo-plastic (D) Non-Newtonian

Last Answer : (A) Newtonian

Description : For laminar flow of Newtonian fluid in a circular pipe, the velocitydistribution is a function of the distance 'd' measured from the centre line of the pipe, and it follows a __________ relationship. (A) Logarithmic (B) Parabolic (C) Hyperbolic (D) Linear

Last Answer : (B) Parabolic

Description : The fluid velocity varies as the square root of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop of __________ fluid. (A) Dilatent (B) Pseudo-plastic (C) Bingham plastic (D) Newtonian

Last Answer : (A) Dilatent

Description : Pick out the wrong statement. (A) A fluid mass is free from shearing forces, when it is made to rotate with a uniform velocit (B) Newton's law of viscosity is not applicable to the ... types of bearings (D) Rise of water in capillary tubes reduces with the increasing diameter of capillary tubes

Last Answer : (B) Newton's law of viscosity is not applicable to the turbulent flow of fluid with linear velocity distribution

Description : Pick out the wrong statement. (A) The controlling resistance in case of heating of air by condensing steam is in the air film (B) The log mean temperature difference (LMTD) for ... a pure fluid at a given pressure from liquid to vapor or vice-versa occurs at saturation temperature

Last Answer : (C) In case of a 1 - 2 shell and tube heat exchanger, the LMTD correction factor value increases sharply, when a temperature cross occurs

Description : The Nusselt number for fully developed (both thermally and hydrodynamically) laminar flow through a circular pipe whose surface temperature remains constant is (A) 1.66 (B) 88.66 (C) 3.66 (D) Dependent on NRe only

Last Answer : (C) 3.66