For a laminar flow of fluid in a circular tube, 'h1
' is the convective heat
transfer co-efficient at velocity 'V1
'. If the velocity is reduced by half and
assuming the fluid properties are constant, the new convective heat transfer
co-efficient is
(A) 1.26 h1
(B) 0.794 h1
(C) 0.574 h1
(D) 1.741 h1

1 Answer

Answer :

(B) 0.794 h1

Related questions

Description : Convective heat transfer co-efficient in case of fluid flowing in tubes is not affected by the tube length/diameter ratio, if the flow is in the __________ zone. (A) Laminar (B) Transition (C) Both 'a' & 'b' (D) Highly turbulent

Last Answer : (D) Highly turbulent

Description : In case of laminar flow of fluid through a circular pipe, the (A) Shear stress over the cross-section is proportional to the distance from the surface of the pipe (B) Surface of velocity distribution is a ... occurs at a radial distance of 0.5 r from the centre of the pipe (r = pipe radius)

Last Answer : (B) Surface of velocity distribution is a paraboloid of revolution, whose volume equals half the volume of circumscribing cylinder

Description : Which of the following parameters is increased by use of finned tube in a multipass shell and tube heat exchanger? (A) Tube side pressure drop and the heat transfer rate (B) Convective heat transfer co-efficient (C) Effective tube surface area for convective heat transfer (D) All (A) (B) and (C)

Last Answer : (D) All (A) (B) and (C)

Description : A thin, flat & square plate measuring 2 m 2 m is freely hanging in ambient air at 25°C. It is exposed to the solar radiation falling on one side of the plate at the rate of 500 W/m2. The plate temperature will ... heat transfer co-efficient is __________ W/m2 °C. (A) 50 (B) 100 (C) 150 (D) 200

Last Answer : (B) 100

Description : The Reynolds number of the liquid was increased 100 fold for a laminar falling film used for gas-liquid contacting. Assuming penetrating theory is applicable, the fold increase in the mass transfer co-efficient (Kc ) for the same system is. (A) 100 (B) 10 (C) 5 (D) 1

Last Answer : (B) 10

Description : What is the critical radius of insulation (cms) for a metallic cylinder, if the convective heat transfer co-efficient with the ambient atmosphere is 5 W/m2. °K? Thermal conductivity of metal and insulation material are 40 and 0.1 W/m.°K respectively. (A) 2 (B) 8 (C) 10 (D) 40

Last Answer : (A) 2

Description : Pick out the wrong statement. (A) Superheated steam is preferably not used for process heating because of its low heat transfer film co-efficient (B) In a shell and tube heat exchanger ... surface heat exchangers, when the direction of fluid flow is parallel to the axis of the tube

Last Answer : (C) S.I. unit of fouling factor is Watt/m2 .°K

Description : The Sieder-Tate correlation for heat transfer in turbulent flow in pipe gives Nu α Re 0.8 , where, Nu is the Nusselt number and Re is the Reynolds number for the flow. Assuming that this relation is valid, the heat transfer co-efficient ... pipe diameter (D) as (A) D-1.8 (B) D-0.2 (C) D0.2 (D) D1.8

Last Answer : (B) D-0.2

Description : Bulk of the convective heat transfer resistance from a hot tube surfaceto the fluid flowing in it, is (A) In the central core of the fluid (B) Uniformly distributed throughout the fluid (C) Mainly confined to a thin film of fluid near the surface (D) None of these

Last Answer : (C) Mainly confined to a thin film of fluid near the surface

Description : The ratio of average fluid velocity to the maximum velocity in case of laminar flow of a Newtonian fluid in a circular pipe is (A) 0.5 (B) 1 (C) 2 (D) 0.66

Last Answer : (A) 0.5

Description : What is the ratio of total kinetic energy of fluid passing per second to the value obtained on the basis of average velocity (for laminar flow through a circular pipe)? (A) 0.5 (B) 1 (C) 1.5 (D) 2

Last Answer : (D) 2

Description : Out of the following four assumptions used in the derivation of theequation for LMTD [LMTD = (∆t1 - ∆t2 )/ln(∆t1 /∆t2 )], which one is subject to the largest deviation in practice ? (A) Constant ... (B) Constant rate of fluid flow (C) Constant specific heat (D) No partial phase change in the system

Last Answer : (B) Constant rate of fluid flow

Description : Pick out the wrong statement. (A) The shear stress at the pipe (dia = D, length = L) wall in case of laminar flow of Newtonian fluids is (D/4L). ∆p (B) In the equation, T. gc = k. ... to motion (D) With increase in the Mach number >0.6, the drag co-efficient decreases in case of compressible fluids

Last Answer : (D) With increase in the Mach number >0.6, the drag co-efficient decreases in case of compressible fluids

Description : Experimental study of laminar fluid flow through a circular tube was conducted by (A) Reynolds (B) Hagen and Poiseuille (C) Pascal (D) Blake-Plummer

Last Answer : (B) Hagen and Poiseuille

Description : The distribution of shear stress in a stream of fluid in a circular tube is (A) Linear with radius for turbulent flow only (B) Linear with radius for laminar flow only (C) Linear with radius for both laminar & turbulent flow (D) Parabolic with radius for both laminar & turbulent flow

Last Answer : (C) Linear with radius for both laminar & turbulent flow

Description : For laminar flow of Newtonian fluids through a circular pipe, for a given pressure drop and length & diameter of pipe, the velocity of fluid is proportional to (where, μ = fluid viscosity ) (A) μ (B) 1/μ (C) √μ (D) 1/√μ

Last Answer : (B) 1/μ

Description : The average heat transfer co-efficient over the entire length of the plate (ha ) and the local heat transfer co-efficient (hL ), in case of heat transfer over a flat plate in laminar zone is related as (A) ha = 0.8hL (B) ha = 2hL (C) ha = hL (D) ha = 5hL

Last Answer : (B) ha = 2hL

Description : Heat transfer co-efficient (h1 ) for liquids increases with (A) Increasing temperature (B) Decreasing temperature (C) Decreasing Reynolds number (D) None of these

Last Answer : (A) Increasing temperature

Description : If h1 = inner film co-efficient and /h2 = outer film co-efficient, then the overall heat transfer co-efficient is (A) Always less than h1 (B) Always between h1 and h2 (C) Always higher than h2 (D) Dependent on metal resistance

Last Answer : (B) Always between h1 and h2

Description : The inside heat transfer co-efficient in case of turbulent flow of liquid in the tube side in a 1-2 shell and tube heat exchanger is increased by __________ times, when the number of tube passes is increased to 8. (A) 2 0.8 (B) 4 0.8 (C) 4 0.4 (D) 2 0.4

Last Answer : (B) 4 0.8

Description : Pick out the wrong statement. (A) In the McCabe-Thiele diagram for binary distillation, vertical feed line represents saturated liquid feed and horizontal feed line represents saturated vapour feed (B) In ... layers over a flat plate are of equal thickness, if Schmidt number is equal to unity

Last Answer : (C) For Laminar flow over a plate of length L, the local mass transfer co￾efficient at a distance L from the leading edge is 1.5 × 10 -2m/s. Then the average mass transfer co-efficient for the plate is 2 × 10 -2m/s

Description : Consider the following statements in respect of steady laminar flow through a circular pipe: 1. Shear stress is zero on the central axis of the pipe 2. Discharge varies directly with the viscosity of the fluid 3. Velocity is maximum at the ... 2 , 3 & 4 (b) 1 & 3 only (c) 2 & 4 only (d)3 & 4 only

Last Answer : (b) 1 & 3 only

Description : In an extended surface heat exchanger, fluid having lower co-efficient (A) Flows through the tube (B) Flows outside the tubes (C) Can flow either inside or outside the tubes (D) Should not be used as it gives very high pressure drop

Last Answer : (B) Flows outside the tubes

Description : Pick out the wrong statement. (A) Momentum transfer in laminar flow results from velocity gradient (B) A fluid in equilibrium is not free from shear stress (C) The viscosity of a non-Newtonian fluid is a function of temperature only (D) Both (B) and (C)

Last Answer : (D) Both (B) and (C)

Description : A metal wire of 0.01 m dia and thermal conductivity 200 W/m.K is exposed to a fluid stream with a convective heat transfer coefficient of 100 W/m2 .K. The Biot number is (A) 5.6 (B) 0.025 (C) 3.5 (D) 0.0035

Last Answer : (B) 0.025

Description : Baffles in the shell side of a shell and tube heat exchanger (A) Increase the cross-section of the shell side liquid (B) Force the liquid to flow parallel to the bank (C) Increase the shell side heat transfer co-efficient (D) Decrease the shell side heat transfer co-efficient

Last Answer : (C) Increase the shell side heat transfer co-efficient

Description : For turbulent flow in a tube, the heat transfer co-efficient is obtained from the Dittus-Boelter correlation. If the tube diameter is halved and the flow rate is doubled, then the heat transfer co-efficient will change by a factor of (A) 1 (B) 1.74 (C) 6.1 (D) 37

Last Answer : (C) 6.1

Description : The fluid velocity varies as the cube of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop for __________ fluid. (A) Newtonian (B) Pseudo-plastic (C) Dilatent (D) Bingham plastic

Last Answer : (B) Pseudo-plastic

Description : The fluid velocity varies as the square of the cylindrical pipe diameter, in case of steady state laminar flow at constant pressure drop, for __________ fluid. (A) Newtonian (B) Dilatant (C) Pseudo-plastic (D) Non-Newtonian

Last Answer : (A) Newtonian

Description : The fluid velocity varies as the square root of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop of __________ fluid. (A) Dilatent (B) Pseudo-plastic (C) Bingham plastic (D) Newtonian

Last Answer : (A) Dilatent

Description : essure drop (Δp) for a fluid flowing in turbulent flow through a pipe is a function of velocity (V) as (A) V1.8 (B) V-0.2 (C) V2.7 (D) V

Last Answer : (D) V

Description : The Nusselt number for fully developed (both thermally and hydrodynamically) laminar flow through a circular pipe, where the wall heat flux is constant, is (A) 2.36 (B) 4.36 (C) 120.36 (D) Dependent on NRe only

Last Answer : (B) 4.36

Description : Use of transverse baffles in a shell and tube heat exchanger is done to increase the (A) Rate of heat transfer (B) Flow velocity (C) Turbulence of shell side fluid (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : The characteristic dimensionless groups for heat transfer to a fluid flowing through a pipe in laminar flow are (A) Re.Gz (B) Nu, Pr (C) Nu, Pr, Re (D) Nu, Gz

Last Answer : (D) Nu, Gz

Description : Maximum heat transfer rate is achieved in __________ flow. (A) Co-current (B) Counter-current (C) Turbulent (D) Laminar

Last Answer : (C) Turbulen

Description : A fluid flows in a steady manner between two section in a flow line at section 1: A 1 = 1ft², V1 = 100fpm, volume1 of 4ft³/lb. at sec2: A2 = 2 ft², p= 0.20 lb/ft³ calculate the velocity at section 2.  a. 625 fpm  b. 567 fpm  c. 356 fpm  d. None of the above

Last Answer : 625 fpm

Description : For laminar flow of Newtonian fluid in a circular pipe, the velocitydistribution is a function of the distance 'd' measured from the centre line of the pipe, and it follows a __________ relationship. (A) Logarithmic (B) Parabolic (C) Hyperbolic (D) Linear

Last Answer : (B) Parabolic

Description : Fanning friction factor for laminar flow of fluid in a circular pipe is (A) Not a function of the roughness of pipe wall (B) Inversely proportional to Reynolds number (C) Both (A) & (B) (D) Neither (A) nor (B)

Last Answer : (C) Both (A) & (B)

Description : Heat transfer co-efficient (h) for a fluid flowing inside a clean pipe is given by h = 0.023 (K/D) (DVρ/µ) 0.8 (CP .µ/k) 0.4 . This is valid for the value of NRe equal to (A) < 2100 (B) 2100-4000 (C) > 4000 (D) > 10000

Last Answer : (D) > 10000

Description : Asymptotic conditions is reached, when for a fluid flowing in laminar flow through a long tube (A) Exit-fluid temperature > wall temperature (B) Exit fluid temperature < wall temperature (C) Exit fluid temperature = wall temperature (D) Graetz number > 100

Last Answer : (C) Exit fluid temperature = wall temperature

Description : The Nusselt number for fully developed (both thermally and hydrodynamically) laminar flow through a circular pipe whose surface temperature remains constant is (A) 1.66 (B) 88.66 (C) 3.66 (D) Dependent on NRe only

Last Answer : (C) 3.66

Description : . In a shell and tube heat exchanger, the tube side heat transfer co￾efficient just at the entrance of the tube is (A) Infinity (B) Zero (C) Same as average heat transfer co-efficient for tube side (D) None of these

Last Answer : (A) Infinity

Description : Steam is to be condensed in a shell and tube heat exchanger, 5 m long with a shell diameter of 1 m. Cooling water is to be used for removing the heat. Heat transfer co-efficient ... ) Horizontal heat exchanger with steam on tube side (D) Horizontal heat exchanger with steam on shell side

Last Answer : (B) Vertical heat exchanger with steam on shell side

Description : In case of vertical tube evaporator, with increase in liquor level, the overall heat transfer co-efficient (A) Increases (B) Decreases (C) Is not affected (D) May increase or decrease; depends on the feed

Last Answer : (B) Decreases

Description : Overall heat transfer co-efficient of a particular tube is U1 . If the same tube with some dirt deposited on either side has coefficient U2 , then (A) U1 = U2 (B) U2 > U1 (C) U1 > U2 (D) U1 = dirt factor - U2

Last Answer : (A) U1 = U2

Description : The advantage of using a 1 - 2 shell and tube heat exchanger over a 1 - 1 shell and tube heat exchanger is (A) Lower tube side pressure drop (B) Lower shell side pressure drop (C) Higher tube side heat transfer co-efficient (D) Higher shell side heat transfer co-efficient

Last Answer : (C) Higher tube side heat transfer co-efficient

Description : Multipass heat exchangers are used (A) Because of simplicity of fabrication (B) For low heat load (C) To obtain higher heat transfer co-efficient and shorter tube (D) To reduce the pressure drop

Last Answer : (C) To obtain higher heat transfer co-efficient and shorter tube

Description : Extremely large or small volumes of fluids are generally best routed through the shell side of a shell and tube heat exchanger, because of the (A) Less corrosion problems (B) Flexibility possible in the baffle arrangement (C) Low pressure drop (D) High heat transfer co-efficient

Last Answer : (B) Flexibility possible in the baffle arrangement