The pressure drop per unit length for laminar flow of fluid through a long pipe is proportional to (where, A = cross-sectional area of the pipe & D = Diameter of the pipe)
(A) A
(B) D
(C) 1/A
(D) 1/A2

1 Answer

Answer :

(C) 1/A

Related questions

Description : For laminar flow of Newtonian fluids through a circular pipe, for a given pressure drop and length & diameter of pipe, the velocity of fluid is proportional to (where, μ = fluid viscosity ) (A) μ (B) 1/μ (C) √μ (D) 1/√μ

Last Answer : (B) 1/μ

Description : For laminar flow of a fluid through a packed bed of spheres of diameter d, the pressure drop per unit length of bed depends upon the sphere diameter as (A) d (B) d 2 (C) d 4 (D) d

Last Answer : (D) d

Description : Resistance of an electrical conductor is proportional to its (where, l = length and A = cross-sectional area of the conductor) (A) A (B) l (C) A2 (D) Both 'a' & 'b'

Last Answer : (D) Both 'a' & 'b'

Description : The fluid velocity varies as the cube of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop for __________ fluid. (A) Newtonian (B) Pseudo-plastic (C) Dilatent (D) Bingham plastic

Last Answer : (B) Pseudo-plastic

Description : The fluid velocity varies as the square of the cylindrical pipe diameter, in case of steady state laminar flow at constant pressure drop, for __________ fluid. (A) Newtonian (B) Dilatant (C) Pseudo-plastic (D) Non-Newtonian

Last Answer : (A) Newtonian

Description : The fluid velocity varies as the square root of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop of __________ fluid. (A) Dilatent (B) Pseudo-plastic (C) Bingham plastic (D) Newtonian

Last Answer : (A) Dilatent

Description : In case of laminar flow of fluid through a circular pipe, the (A) Shear stress over the cross-section is proportional to the distance from the surface of the pipe (B) Surface of velocity distribution is a ... occurs at a radial distance of 0.5 r from the centre of the pipe (r = pipe radius)

Last Answer : (B) Surface of velocity distribution is a paraboloid of revolution, whose volume equals half the volume of circumscribing cylinder

Description : he pressure drop per unit length of pipe incurred by a fluid 'X' flowing through pipe is Δp. If another fluid 'Y' having both the specific gravity & density just double of that of fluid 'X', flows through the same pipe ... then the pressure drop in this case will be (A) Δp (B) 2Δp (C) Δp 2 (D) Δp/2

Last Answer : (B) 2Δp

Description : Transition from laminar flow to turbulent flow in fluid flow through a pipe does not depend upon the (A) Length of the pipe (B) Diameter of the pipe (C) Density of the fluid (D) Velocity of the fluid

Last Answer : (A) Length of the pipe

Description : Pick out the wrong statement. (A) The shear stress at the pipe (dia = D, length = L) wall in case of laminar flow of Newtonian fluids is (D/4L). ∆p (B) In the equation, T. gc = k. ... to motion (D) With increase in the Mach number >0.6, the drag co-efficient decreases in case of compressible fluids

Last Answer : (D) With increase in the Mach number >0.6, the drag co-efficient decreases in case of compressible fluids

Description : Discharge in laminar flow through a pipe varies (A) As the square of the radius (B) Inversely as the pressure drop (C) Inversely as the viscosity (D) As the square of the diameter

Last Answer : (A) As the square of the radius

Description : Fanning friction factor for laminar flow of fluid in a circular pipe is (A) Not a function of the roughness of pipe wall (B) Inversely proportional to Reynolds number (C) Both (A) & (B) (D) Neither (A) nor (B)

Last Answer : (C) Both (A) & (B)

Description : The most economical channel section for the fluid flow is the one for which the discharge is maximum for a given cross-sectional area. Vertical velocity distribution in an open channel for laminar flow can be assumed to be (A) Parabolic (B) Hyperbolic (C) Straight line (D) None of these

Last Answer : (A) Parabolic

Description : Assuming flow to be laminar, if the diameter of the pipe is halved, then the pressure drop will (A) Increase (B) Decrease (C) Remain same (D) Be quadrupled

Last Answer : (A) Increase

Description : For turbulent flow of an incompressible fluid through a pipe, the flow rate ‘Q’ is proportional to (Δ P)n, where ΔP is the pressure drop. The value of exponent 'n' is (A) 1 (B) 0 (C) < 1 (D) > 1

Last Answer : (C) < 1

Description : For specified tube outside diameter, higher BWG means higher (A) Tube thickness (B) Cross-sectional area (C) Weight per unit length (D) None of these

Last Answer : (B) Cross-sectional area

Description : What is the ratio of total kinetic energy of fluid passing per second to the value obtained on the basis of average velocity (for laminar flow through a circular pipe)? (A) 0.5 (B) 1 (C) 1.5 (D) 2

Last Answer : (D) 2

Description : Convective heat transfer co-efficient in case of fluid flowing in tubes is not affected by the tube length/diameter ratio, if the flow is in the __________ zone. (A) Laminar (B) Transition (C) Both 'a' & 'b' (D) Highly turbulent

Last Answer : (D) Highly turbulent

Description : Pick out the wrong statement. (A) The form drag is dependent upon the occurrence of a wake (B) The shear stress at any given cross-section of a pipe for steady flow (either laminar or turbulent ... of viscosity (D) Existence of the boundary layer in fluid flow is because of viscosity of the fluid

Last Answer : (C) An ideal fluid is the one, which has negligible surface tension and obeys the Newton's law of viscosity

Description : The equivalent diameter for fluid flow through square cross section channel of side 'x', for pressure drop calculation purpose is given by (A) 4x (B) 2x (C) x (D) √x

Last Answer : (C) x

Description : 16. Surface tension force is the product of surface tension per unit length and cross-sectional area of flow. A) Correct B) Incorrect

Last Answer : B

Description : Water flows through a horizontal pipe at a constant volumetric rate. At a location where the cross sectional area decreases, the velocity of the fluid: (1) increases (2) decreases (3) stays the same (4) none of the above

Last Answer : (1) increases

Description : Water flows through a horizontal pipe at a constant volumetric rate. At a location where the cross sectional area decreases, the velocity of the fluid: w) increases x) decreases y) stays the same

Last Answer : ANSWER: W -- INCREASES 

Description : Consider the following statements in respect of steady laminar flow through a circular pipe: 1. Shear stress is zero on the central axis of the pipe 2. Discharge varies directly with the viscosity of the fluid 3. Velocity is maximum at the ... 2 , 3 & 4 (b) 1 & 3 only (c) 2 & 4 only (d)3 & 4 only

Last Answer : (b) 1 & 3 only

Description : In case of a pipe of constant cross-sectional area, the maximum fluid velocity obtainable is (A) The velocity of sound (B) Dependent on its cross-sectional area (C) Dependent on fluid viscosity (D) Dependent on fluid density

Last Answer : (A) The velocity of sound

Description : The loss of head due to viscosity for laminar flow in pipes is (where d = Diameter of pipe, l = Length of pipe, v w = Specific weight of the flowing liquid) (A) 4 (B) 8 (C) 16 (D) 32

Last Answer : Answer: Option D

Description : A fluid is flowing inside the inner tube of a double pipe heat exchanger with diameter 'd'. For a fixed mass flow rate, the tube side heat transfer co￾efficient for turbulent flow conditions is proportional to (A) d 0.8 (B) d -0.2 (C) d -1 (D) d -1.8

Last Answer : (B) d -0.2

Description : The characteristic dimensionless groups for heat transfer to a fluid flowing through a pipe in laminar flow are (A) Re.Gz (B) Nu, Pr (C) Nu, Pr, Re (D) Nu, Gz

Last Answer : (D) Nu, Gz

Description : The spring index is, (A) Ratio of wire diameter to mean coil diameter (B) Force per unit cross-sectional area of spring (C) Ratio of mean coil diameter to wire diameter (D) Force required to produce unit deflection

Last Answer : (C) Ratio of mean coil diameter to wire diameter

Description : The stiffness of spring is, (A) Deflection per unit of axial force (B) Force per unit cross-sectional area of spring (C) Ratio of mean coil diameter to wire diameter (D) Force required to produce unit deflection

Last Answer : (D) Force required to produce unit deflection

Description : Applying a pressure drop across a capillary results in a volumetric flow rate 'Q' under laminar flow conditions. The flow rate for the same pressure drop, in a capillary of the same length but half the radius is (A) Q/2 (B) Q/4 (C) Q/8 (D) Q/16

Last Answer : (D) Q/16

Description : The ratio of average fluid velocity to the maximum velocity in case of laminar flow of a Newtonian fluid in a circular pipe is (A) 0.5 (B) 1 (C) 2 (D) 0.66

Last Answer : (A) 0.5

Description : For laminar flow of Newtonian fluid in a circular pipe, the velocitydistribution is a function of the distance 'd' measured from the centre line of the pipe, and it follows a __________ relationship. (A) Logarithmic (B) Parabolic (C) Hyperbolic (D) Linear

Last Answer : (B) Parabolic

Description : Pressure gradient in the pipe flow is influenced by the (A) Diameter of pipe (B) Velocity of the fluid (C) Density & viscosity of the fluid (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : Two fluids are flowing through two similar pipes of the same diameter. The Reynold's number is same. For the same flow rate if the viscosity of a fluid is reduced to half the value of the ... (A) Increase (B) Decrease (C) Remain unchanged (D) Data insufficient to predict relative pressure drop

Last Answer : (B) Decrease

Description : With diminishing cross-sectional area in case of subsonic flow in a converging nozzle, the (A) Velocity increases (B) Pressure decreases (C) Both (A) & (B) (D) Neither (A) nor (B)

Last Answer : (C) Both (A) & (B)

Description : The head loss in turbulent flow in pipe is proportional to(where, V = velocity of fluid through the pipe) (A) V 2 (B) 1/V 2 (C) 1/V (D) V

Last Answer : (A) V

Description : Where does the maximum stress occur in case of laminar flow of incompressible fluid in a closed conduit of diameter 'd'? (A) At the centre (B) At d/4 from the wall (C) At the wall (D) At d/8 from the wall

Last Answer : (C) At the wall

Description : Pick out the wrong statement. (A) A fluid mass is free from shearing forces, when it is made to rotate with a uniform velocit (B) Newton's law of viscosity is not applicable to the ... types of bearings (D) Rise of water in capillary tubes reduces with the increasing diameter of capillary tubes

Last Answer : (B) Newton's law of viscosity is not applicable to the turbulent flow of fluid with linear velocity distribution

Description : In laminar flow through a round tube, the discharge varies (A) Linearly as the viscosity (B) Inversely as the pressure drop (C) Inversely as the viscosity (D) As the square of the radius

Last Answer : (C) Inversely as the viscosity

Description : Pick up the incorrect statement from the following: (A) The rate of flow of water through a unit cross-sectional area under a unit hydraulic gradient, is called coefficient of permeability (B) ... aquifers, is governed by the Darcy's law (D) The term 'transmissibility' was introduced by Meinzer

Last Answer : Answer: Option D

Description : Which of the following factors does not contribute to the pressure drop in a pipeline? (A) Velocity of fluid (B) Size of pipe (C) Length of pipe and number of bends (D) None of these

Last Answer : (D) None of these

Description : The Prandtl mixing length is (A) Zero at the pipe wall and is a universal constant (B) Independent of radial distance from the pipe axis (C) Independent of the shear stress (D) Useful for computing laminar flow problems

Last Answer : (D) Useful for computing laminar flow problems

Description : Prandtl mixing length is (A) Applicable to laminar flow problems (B) A universal constant (C) Zero at the pipe wall (D) None of these

Last Answer : (C) Zero at the pipe wall

Description : Normal force acting per unit cross sectional area is called A. weight B. pressure C. volume D. friction

Last Answer : pressure

Description : Pick out the correct statement. (A) A forced vortex occurs when fluid rotates as a solid about an axis (B) In laminar flow, Newton's law of viscosity does not apply (C) A free vortex occurs, when fluid rotates as a solid (D) In turbulent flow, there are neither cross-currents nor eddies

Last Answer : (A) A forced vortex occurs when fluid rotates as a solid about an axis

Description : essure drop (Δp) for a fluid flowing in turbulent flow through a pipe is a function of velocity (V) as (A) V1.8 (B) V-0.2 (C) V2.7 (D) V

Last Answer : (D) V

Description : The frictional resistance in laminar flow does not depend on the (A) Area of surface in contact (B) Flow velocity (C) Fluid temperature (D) Pressure of flow

Last Answer : (A) Area of surface in contact