Period of simple harmonic motion of a spiral spring or elastic thread

is given by

A. T = 2π × (extension produced/gravitational field strength)

B. T = 2π × (extension produced/√(gravitational field strength))

C. T = 2π × (√(extension produced)/gravitational field strength)

D. T = 2π × √(extension produced/gravitational field strength)

1 Answer

Answer :

T = 2π × √(extension produced/gravitational field strength)

Related questions

Description : When a body moves with simple harmonic motion, the product of its periodic time and frequency is equal to A. Zero B. One C. π/2 D. 2π

Last Answer : B. One

Description : Torricelli's theorem states that the velocity ‘v’ of the liquid emerging from the bottom of the wide tank is given by √(2gh). In practice, this velocity is: A. equal to √(2gh) B. greater than √(2gh) C. lesser than √(2gh) D. independent of height and gravitational field strength

Last Answer :  lesser than √(2gh

Description : Which of the following statements dealing with simple harmonic motion of a mass-spring system is TRUE? w) The acceleration is largest when the oscillating mass is instantaneously at rest. x) The ... of the motion. z) The acceleration is larger when the oscillating mass has its greatest velocity.

Last Answer : ANSWER: W -- THE ACCELERATION IS LARGEST WHEN THE OSCILLATING MASS IS INSTANTANEOUSLY AT REST 

Description : What is a conical pendulum? Show that its time period is given by 2π √(l cos θ)/g, where l is the length of the string,

Last Answer : What is a conical pendulum? Show that its time period is given by 2π\(\sqrt{\frac{l\,cos\, ... the vertical and g is the acceleration due to gravity.

Description : Velocity of escape is equal to A. r √(2g); where r: radius of Earth or any other planet for that matter, g: gravitational field strength B. g √(2r); where r: radius of ... (2gr); where r: radius of Earth or any other planet for that matter, g: gravitational field strength

Last Answer : √(2gr); where r: radius of Earth or any other planet for that matter, g: gravitational field strength

Description : A body which is attached to a spring undergoes simple harmonic motion. The magnitude of the body's acceleration is: w) constant x) proportional to its displacement from its equilibrium position y) zero z) always increasing.

Last Answer : ANSWER: X -- PROPORTIONAL TO ITS DISPLACEMENT FROM ITS EQUILIBRIUM POSITION 

Description : Critical Speed (Nc ) of a ball mill is given by (where R1 and R2 are radii of ball mill and the ball respectively). (A) Nc = (1/4π). √(g/R1 - R2 ) (B) Nc = (1/2π). √(g/R1 - R2 ) (C) Nc = (1/π). √(g/R1 - R2 ) (D) Nc = (1/2π). √(R1 - R2 /g)

Last Answer : (B) Nc = (1/2π). √(g/R1 - R2 )

Description : The equation, X = A cos(wt + f) (read: X equals A times the cosine of omega t + phi (fee)), can represent an expression for: w) accelerating due to gravity x) uniform straight line motion y) dc current z) a simple harmonic oscillator

Last Answer : ANSWER: Z -- A SIMPLE HARMONIC OSCILLATOR

Description : The period of oscillation of a particle undergoing simple harmonic motion is: w) independent of the amplitude of the motion x) directly proportional to the frequency of oscillation y) independent of the frequency of oscillation z) none of the above

Last Answer : ANSWER: W -- INDEPENDENT OF THE AMPLITUDE OF THE MOTION 

Description : An insect of negligible mass is sitting on a block of mass M, tied with a spring of force constant K. The block performs simple harmonic motion with a

Last Answer : An insect of negligible mass is sitting on a block of mass M, tied with a spring of force constant K. The block ... /2 sqrt(k/M)` D. `2A sqrt(k/M)`

Description : Critical speed of rotation, N (in rps - rotation per second) of a trammel is equal to (where, g = acceleration due to gravity = 9.81 m/sec 2 and, r = radius of trammel, metre.) (A) (1/2π). √(g/r) (B) (1/π). √(g/r) (C) ½ √(g/r) (D) 2π. √(g/r)

Last Answer : (A) (1/2π). √(g/r)

Description : If extension in spring is proportional to load applied, then material obeys A. Newton's law B. gravitational law C. Charles's law D. Hooke's law

Last Answer : Hooke's law

Description : The moving parts of a machine which weigh 1 tonne perform vertical simple harmonic motion with an amplitude of 2.5 cm and a period of 0.5 sec. The base of the machine weighs 3 tonnes and rests on the ground. Maximum ... would be a.3.6 tonnes b.2.4 tonnes c.4.0 tonnes d.4.8 tonnes e.4.4 tonnes

Last Answer : e. 4.4 tonnes

Description : A particle is moving in Simple Harmonic Motion in a simple pendulum with some period of oscillation. Now in order to double the period of oscillation a.The length of pendulum should be quadrupled b.The ... length of pendulum should be reduced to one fourth e.The mass of the bob should be doubled

Last Answer : a. The length of pendulum should be quadrupled

Description : Define the following with reference to simple harmonic motion. a) Amplitude b) Oscillation c) Time period

Last Answer : a) The maximum displacement of the particle on either side of the equilibrium position is called amplitude. b) One complete to and fro motion of the particle about its mean position is called oscillation

Description : If the length of a simple pendulum is halved then its period of oscillation is - (1) doubled (2) halved (3) increased by a factor √ 2 (4) decreased by a factor √ 2

Last Answer : (4) decreased by a factor √ 2

Description : The type of spring used to absorb and release energy in mechanical watches is (A) Helical extension spring (B) Multi-leaf spring (C) Spiral spring (D) Helical torsion spring

Last Answer : (C) Spiral spring

Description : The type of spring used to measure weights in spring balance is, (A) Helical extension spring (B) Multi-leaf spring (C) Spiral spring

Last Answer : (A) Helical extension spring

Description : The type of spring used in door hinges is, (A) Helical extension spring (B) Multi-leaf spring (C) Spiral spring (D) Helical torsion spring

Last Answer : (D) Helical torsion spring

Description : The type of spring used to absorb shocks and vibrations in vehicles is, (A) Helical extension spring (B) Multi-leaf spring (C) Spiral spring (D) Belleville (coned disk) spring

Last Answer : (B) Multi-leaf spring

Description : Which of the following is an example of simple harmonic motion? (1) Earth spinning on its axis (2) Simple pendulum motion (3) Bali bouncing on floor (4) Motion of a ceiling fan

Last Answer : (2) Simple pendulum motion Explanation: When a body moves about a mean position in such a way that the acceleration is proportional to the displacement and is always directed towards the mean ... to execute a simple harmonic motion. The motion of a simple pendulum falls under this category.

Description : The motion of a body that repeats itself after a regular interval of time is – (1) a periodic motion (2) a simple harmonic motion (3) an aperiodic motion (4) an oscillatory motion

Last Answer : (1) a periodic motion Explanation: The motion of a body that repeats itself after a regular interval of time is called 'Periodic Motion'. Simple Harmonic Motion is a type of periodic motion where the restoring force is directly proportional to the displacement.

Description : In simple harmonic motion, the acceleration is: w) constant x) proportional to the distance from the central position y) greatest when the velocity is greatest z) none of the above

Last Answer : ANSWER: X -- PROPORTIONAL TO THE DISTANCE FROM THE CENTRAL POSITION

Description : Which of the following is an example of simple harmonic motion? (1) Earth spinning on its axis (2) Simple pendulum motion (3) Ball bouncing on floor (4) Motion of a ceiling fan

Last Answer : Simple pendulum motion

Description : The motion of a body that repeats itself after a regular interval of time is (1) a periodic motion (2) a simple harmonic motion (3) an aperiodic motion (4) an oscillatory motion

Last Answer : a periodic motion

Description : Speed ‘v’ with which wave travels through a medium is given by A. modulus of elasticity/density of the medium B. modulus of elasticity/√(density of the medium) C. √(modulus of elasticity/density of the medium) D. v=d/t

Last Answer : √(modulus of elasticity/density of the medium)

Description : A particle in simple Harmonic Motion while passing through mean position will have a.Maximum kinetic energy and minimum potential energy b.Average kinetic energy and average potential energy c. ... energy d.Maximum kinetic energy and maximum e.Minimum kinetic energy and minimum potential energy

Last Answer : a. Maximum kinetic energy and minimum potential energy

Description : The periodic time of a body moving in Simple Harmonic Motion is a.Directly proportional to its angular velocity b.Directly proportional to the weight of the body c.Inversely proportional to ... d.Directly proportional to the momentum of swinging body e.Inversely proportional to the angular velocity

Last Answer : e. Inversely proportional to the angular velocity

Description : A body in Simple Harmonic Motion will attain maximum velocity when it passes through a.Point of 0.75 amplitude b.Extreme point of the oscillation of L.H.S. c.Point of half amplitude d.Extreme point of the oscillation at R.H.S. e.Mean position

Last Answer : e. Mean position

Description : A body is executing simple harmonic motion of amplitude 1 cm. Its velocitywhile passing through the central point is 10 mm/sec. Its frequency will be a.2.99 rps b.2.22 rps c.1 rps d.1.59 rps e.1.77 rps

Last Answer : c. 1 rps

Description : A body is vibrating with simple harmonic motion of aplitude 5 cm frequency 10 vibrations per second. The maximum value of velocity in cm/s will be a.3.14 cm/s b.314 cm/s c.3140 cm/s d.31.4 cm/s e.31400 cm/s

Last Answer : b. 314 cm/s

Description : Give the practical applications of simple harmonic motion.

Last Answer : a) Simple harmonic motion of a pendulum was used for the measurement of time. b) Tuning the musical instrument is done with the vibrating tuning form which executes simple harmonic motion. c) ... simple harmonic motion. d) The study of molecules is made with the help of vibration spectrum.

Description : Give example of simple harmonic motion.

Last Answer : a) Oscillation of simple pendulum. b) When a tuning fork is hit against a rubber pad, its prongs execute simple harmonic motion. c) When the load is attached to the lower end of a spring suspended from a support is pulled and released, it executes simple harmonic motion.

Description : Define simple harmonic motion and give examples.

Last Answer : Motion which repeats after regular intervals of time is called simple harmonic motion. Ex: Oscillation of simple pendulum, vibration of a tuning fork.

Description : The maximum acceleration of a particle moving with simple harmonic motion is ____. A. ω B. ω.r C. ω / 2 π D. 2 π / ω

Last Answer : B. ω.r

Description : Body having simple harmonic motion is represented by A) x = A sin ωt B) x = A cos ωt C) x = - A sin ωt D) x = - A cos ωt

Last Answer : A) x = A sin ωt

Description : The resultant motion of two Simple Harmonic Motions will be A. Simple Harmonic MotionB. Periodic Motion C. Projectile Motion D. Zero

Last Answer : A. Simple Harmonic Motion

Description : SHM stands for A. Single Harmonic Motion B. Simple Harmonic Motion C. Simple Harmonic Mechanism D. None of the above

Last Answer : B. Simple Harmonic Motion

Description : The maximum acceleration of a particle moving with simple harmonic motion is ____. (A) ω (B) ω.r (C) ω / 2 π (D) 2 π / ω

Last Answer : (B) ω.r

Description : In case of simple harmonic motion, displacement is proportional to the (A) Velocity (B) Acceleration (C) Both (A) & (B) (D) Neither (A) nor (B)

Last Answer : B) Acceleration

Description : Define simple harmonic motion. Give its two example. 

Last Answer : Simple harmonic motion: The to and fro motion of the object about its mean position is called simple harmonic motion.  Examples: motion of swing, motion of sewing machine , motion of clock pendulum , etc.

Description : Power in watts in a shaft having N RPM is given by the equation (a) Power = 2π NT/60 (b) Power = 2π N T (c) Power = 2000 π N T/60 (d) None

Last Answer : (a) Power = 2π NT/60

Description : As distance increases, value of gravitational field strength A. also increases B. decreases C. remains constant D. may increase or decrease

Last Answer : decreases

Description : Mass of Earth when it's radius is 6400 km and gravitational field strength is 9.81 N kg-1 is A. 6.0 × 1024 kg B. 5 × 1023 kg C. 40 × 109 kg D. 9 × 1024 kg

Last Answer : 5 × 1023 kg

Description : The equation of motion for spring mass system includes A. Inertia Force B. Spring Force C. Both D. Gravitational force

Last Answer : C. Both

Description : The energy that stored in a system as a result of its position in the earth’s gravitational field  a. elastic energy  b. kinetic energy  c. potential energy  d. flow energy

Last Answer : potential energy

Description : The locus of a point on a thread unwound from a cylinder will be a.A circle b.A cycloid c.A straight line d.A spiral e.An involute

Last Answer : b. A cycloid

Description : Hooke's law states that A. the extension is proportional to the load when the elastic limit is not exceeded B. the extension is inversely proportional to the load when the elastic limit is not ... is independent of the load when the elastic limit is not exceeded D. load is dependent on extension

Last Answer : the extension is proportional to the load when the elastic limit is not exceeded

Description : Without electrical, mechanical, gravitational, surface tension and motion effects, a system is called _____ system.  A. Simple  B. Simple compressible  C. Compressible  D. Independent

Last Answer : Simple compressible