Two balls are drawn at random from a bag containing 3 white, 3 red, 4 green and 4 black balls, one by one without replacement. -Maths 9th

1 Answer

Answer :

Given, 3 white (3 W), 3 red (3 R), 4 green (4 G), 4 black (4 B) balls Total no. of balls = 3 + 3 + 4 + 4 = 14 Two balls are to be drawn, one by one without replacement. There are 4 possibilities.First BallSecond BallCase IWhiteNot whiteCase IIRedNot RedCase IIIGreenNot GreenCase IVBlackNot blackSince all cases are mutually exclusive, thereforeReqd. Probability = \(rac{3}{14}\) x \(rac{11}{13}\) + \(rac{3}{14}\) x \(rac{11}{13}\) + \(rac{4}{14}\) x \(rac{10}{13}\) + \(rac{4}{14}\) x \(rac{10}{13}\) = \(rac{33+33+40+40}{14 imes13}\) = \(rac{146}{182}\) = \(rac{73}{91}.\)

Related questions

Description : A bag contains 7 white, 5 black and 4 red balls. Four balls are drawn without replacement. -Maths 9th

Last Answer : Let A : Event of getting at least 3 black balls Then n(A) = 5C3 x 11C1 + 5C4 (∵ Besides 5 black balls, there are 11 other balls)(3 black + others) (4 black)= \(rac{5 imes4}{2}\) x 11 + 5 = 115Total numbers of ways ... = 1820∴ P(A) = \(rac{n(A)}{n(S)}\) = \(rac{115}{1820}\) = \(rac{23}{364}.\)

Description : A bag contains 5 white, 7 red and 4 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white. -Maths 9th

Last Answer : Let A, B, C, D denote the events of not getting a white ball in first, second, third and fourth draw respectively. Since the balls are drawn with replacement, therefore, A, B, C, D are independent events such that P (A) = P (B) ... x \(rac{11}{16}\) x \(rac{11}{16}\) = \(\big(rac{11}{16}\big)^4.\)

Description : A bag contains 5 green and 7 red balls, out of which two balls are drawn at random. What is the probability that they are of the same colour ? -Maths 9th

Last Answer : (d) \(rac{31}{66}\)Total number of balls in the bag = 12 (5 Green + 7 Red) Let S be the sample space of drawing 2 balls out of 12 balls.Thenn(S) = 12C2 = \(rac{12 imes11}{2}\) = 66∴ Let A : Event of drawing two red balls⇒ ... \(rac{n(B)}{n(S)}\) = \(rac{21}{66}\) + \(rac{10}{66}\) = \(rac{31}{66}\).

Description : A bag contains 7 red and 5 green balls. The probability of drawing all four balls asred balls, when four balls are drawn at random is -Maths 9th

Last Answer : (b) \(rac{7}{99}\)There are (7 + 5) = 12 balls in the bag. 4 balls can be drawn at random from 12 balls in 12C4 ways. ∴ n(S) = 12C4 = \(rac{|\underline{7}}{|\underline3|\underline4}\) = \(rac{7 imes6 imes5}{3 ... ) = 35∴ Required probability = \(rac{n(A)}{n(S)}\) = \(rac{35}{495}\) = \(rac{7}{99}\).

Description : A bag contains 6 black and 3 white balls. Another bag contains 5 black and 4 white balls. If one ball is drawn from each bag, -Maths 9th

Last Answer : Let W1 and W2 denote the events of drawing a white ball from the first and one from the second bag respectively. Let B1 and B2 denote the events of drawing black balls from the two bags in the same order. Then P ... }\) = \(rac{14}{27}.\) (By addition theorem for mutually exclusive events.

Description : A bag contains 5 green and 11 blue balls and the second one contains 3 green and 7 blue balls. Two balls are drawn from one of the bags. -Maths 9th

Last Answer : (c) \(rac{111}{240}\)P(Drawing of two balls of different colours from one of the bags)= P(choosing the 1st bag) P(Drawing 1 green out 5 green and 1 out of 11 blue balls) + P(choosing the 2nd bag) P(Drawing 1 green out ... (rac{11}{48}\) + \(rac{7}{30}\) = \(rac{55+56}{240}\) = \(rac{111}{240}\).

Description : A basket contains 2 blue, 4 red, 3 green and 5 black balls. If 4 balls are picked at random, what is the probability that -Maths 9th

Last Answer : (d) None of theseThe month having 3 days less than 31 days has 28 days, i.e, it is the month of February. P(Choosing February) = \(rac{1}{12}\).

Description : A bag contains x white, y red and z blue balls. -Maths 9th

Last Answer : Number of blue balls = z Total balls = x + y + z therefore P(blue ball)= z /(x+y+z )

Description : A bag contains x white, y red and z blue balls. -Maths 9th

Last Answer : Number of blue balls = z Total balls = x + y + z therefore P(blue ball)= z /(x+y+z )

Description : Abag contains 4 red and 3 black balls.Asecond bag contains 2 red and 4 black balls. -Maths 9th

Last Answer : (b) \(rac{19}{42} \)A red ball can be selected in two mutually exclusive ways. (i) Selecting bag I and then drawing a red ball from it (ii) Selecting bag II and them drawing a red ball from it ∴ P(red ball) = P(Selecting bag I) ... \(rac{2}{6}\) = \(rac{2}{7}\) + \(rac{1}{6}\) = \(rac{19}{42} \).

Description : A bag contains a white and b black balls. Two players A and B alternately draw a ball from the bag -Maths 9th

Last Answer : (c) 2 : 1Let W denote the event of drawing a white ball at any draw and B that of drawing a black ball. Then, P (W) = \(rac{a}{a+b},\) P(B) = \(rac{b}{a+b}\)∴ P (A wins the game) = P (W or BBW or BBBBW or ... ... the given condition,\(rac{a+b}{a+2b}\) = 3. \(rac{b}{a+2b}\) ⇒ a = 2b ⇒ a : b = 2 : 1.

Description : One bag contains 3 black and 4 white balls and the other bag contains 4 black and 3 white balls. A die is rolled. -Maths 9th

Last Answer : Let A : Getting 2 or 5 B : Getting white ball from first bag C : Getting white ball from second bag.∴ P(A) = \(rac{2}{6}\) = \(rac{1}{3}\) ⇒ P(\(\bar{A}\)) = 1 - P(A) = 1 - \(rac{1}{3}\) = \(rac{2}{3}\)∴ Required ... \(rac{4}{7}\) + \(rac{2}{3}\) x \(rac{3}{7}\) = \(rac{4+6}{21}\) = \(rac{10}{21}.\)

Description : A box contains 100 balls numbers from 1 to 100. If three balls are selected at random and with replacement from the box, what is the probability -Maths 9th

Last Answer : (d) \(rac{1}{4}\)The box contains 100 balls numbered from 1 to 100. Therefore, there are 50 even and 50 odd numbered balls. The sum of the three numbers drawn will be odd, if all three are odd or one is even and 2 are odd. ∴ Required probability = P(odd) × P(odd) × P(odd) + P(even) × P(odd) × P(odd)

Description : There are 5 red, 4 white and 3 blue marbles in a bag. They are drawn one by one and arranged in a row. Assuming that all the 12 marbles -Maths 9th

Last Answer : answer:

Description : A bag contains 30 tickets numbered from 1 to 30. Five tickets are drawn at random and arranged in ascending order -Maths 9th

Last Answer : Total number of ways in which 5 tickets can be drawn = n(S) = 30C5. The tickets are arranged in the form T1, T2, T3 (= 20), T4, T5 Where T1, T2 ∈{1, 2, 3, , 19} and T4, T5 ∈{21, 22, , 30 ... {10 imes9}{2}\) x \(rac{5 imes4 imes3 imes2 imes1}{30 imes29 imes28 imes27 imes26}\) = \(rac{285}{5278}.\)

Description : A bag contain 4 white & 5 red and 6blue color balls,3 balls are drawn randomly.What is the probability of all the balls are red? 1)1/22 2)3/22 3)2/90 4)2/91

Last Answer : 4)2/91 Exp: 15C3/5C2=(15×14×13)/(3×2×1)=10/455=2/91

Description : An urn contains 3 white and 5 blue balls and a second urn contains 4 white and 4 blue balls. If one ball is drawn from each urn, -Maths 9th

Last Answer : Let E : Event of drawing both the balls of same colour from the two urns E1 : Getting 1 white ball from the first urn and 1 white ball from the second urn E2 : Getting 1 blue ball from the first urn and 1 blue ball from ... a ball from other urn)= \(rac{12}{64}+rac{20}{64}=rac{32}{64}=rac{1}{2}.\)

Description : If from each of the three boxes containing 3 blue and 1 red balls, 2 blue and 2 red balls, -Maths 9th

Last Answer : (a) \(rac{13}{32}\)The three boxes B1, B2 and B2 contain the different coloured balls as follows :BlueRedBox 131Box 222Box 313There can be three mutually exclusive cases of drawing 2 blue balls and 1 red balls in the ways as given :Box ... {64}\) + \(rac{2}{64}\) = \(rac{26}{64}\) = \(rac{13}{32}\).

Description : A card is drawn at random from a well-shuffled pack of 52 cards. Find the probability of getting a red card or a diamond or a jack ? -Maths 9th

Last Answer : (d) \(rac{7}{13}\)Here n(S) = 52 Let A, B, C be the events of getting a red card, a diamond and a jack respectively. ∵ There are 26 red cards, 13 diamonds and 4 jacks, n(A) = 26, n(B) = 13, n(C) = 4 ⇒ n(A ∩ B) = ... rac{1}{52}\)= \(rac{44}{52}\) + \(rac{16}{52}\) = \(rac{28}{52}\) = \(rac{7}{13}\) .

Description : Two cards are drawn at random from a well-shuffled pack of 52 cards. What is the probability that either both are black or both are kings ? -Maths 9th

Last Answer : (b) \(rac{55}{221}\)S : Drawing 2 cards out of 52 cards ⇒ n(S) = 52C2 = \(rac{|\underline{52}}{|\underline{52}|\underline2}\) = \(rac{52 imes51}{2}\) = 1326A : Event of drawing 2 black cards out of 26 black cards⇒ n ... ) + \(rac{6}{1326}\) - \(rac{1}{1326}\) = \(rac{330}{1326}\) = \(rac{55}{221}\).

Description : A box contains 4 green, 5 red and 6 white balls. Three balls are drawn randomly. What is the probability that the balls drawn are of different colours? a) 24/91 b) 67/91 c) 21/91 d) 70/91 e) 3/13

Last Answer : Answer is: a)

Description : Two cards are drawn from a well shuffled pack of 52 cards one after another without replacement. -Maths 9th

Last Answer : Probability of drawing an ace in the first draw = \(rac{4}{52}.\)Probability of drawing a queen of opposite shade in the second draw = \(rac{2}{51}.\)Probability of drawing a queen in the first draw = \(rac{4}{52}.\) ... \(rac{2}{51}\) = \(rac{4}{663}.\) [ AND' and OR'Theorems]

Description : A bag contain 7red, 12white and 4green balls .what is the probability that ... 1. 3 balls are drwan all are white 2. 3 balls drawn on one of each colour

Last Answer : A bag contain 7red, 12white and 4green balls .what is the probability that ... 1. 3 balls are drwan ... white 2. 3 balls drawn on one of each colour

Description : A Receptacle contains 3violet, 4purple and 5 black balls. Three balls are drawn at random from the receptacle. The probability that all of them are purple, is: A)3/55 B)7/55 C)1/55 D)9/55

Last Answer : Answer: C) Let S be the sample space. Then, n(S) = number of ways of drawing 3 balls out of 12 = 12C3 = 220 Let E = event of getting all the 3 purple balls. n(E) = 4C3= 4 P(E) = n(E)/n(S) = 4/220 = 1/55

Description : Out of 3n consecutive natural numbers 3 natural numbers are chosen at random without replacement. -Maths 9th

Last Answer : (c) \(rac{3n^2-3n+2}{(3n-1)(3n-2)}\)In 3n consecutive natural numbers, (i) n numbers are of the form 3p (ii) n numbers are of the form 3p + 1 (iii) n numbers are of the form 3p + 2 For the ... ) We can select one number from each set.∴ Favourable number of cases = nC3 + nC3 + nC3 + (nC1 nC1 nC1)

Description : An urn contains nine balls, of which three are red, four are blue and two are green. -Maths 9th

Last Answer : (b) \(rac{2}{7}\)Let S be the sample space having 9 balls (3R + 4B + 2G) Then n(S) = Total number of ways in which 3 balls can be drawn out of the 9 balls= \(rac{9 imes8 imes7}{3 imes2}\) = 84Let A : Event of drawing three ... 2 = 24.∴ P(A) = \(rac{n(A)}{n(S)}\) = \(rac{24}{84}\) = \(rac{2}{7}\).

Description : A box contains 5 different red and 6 different white balls. In how many ways can 6 balls be selected so that there are at least -Maths 9th

Last Answer : The selection of 6 balls, consisting of at least two balls of each color from 5 red and 6 white balls can be made in the following ways: Red balls (5) White balls(6) Number of ways 2 4 5 C 2 ​ × 6 C 4 ​ =150 3 3 5 C 3 ​ × 6 C 3 ​ =200 4 2 5 C 4 ​ × 6 C 2 ​ =75 Total 425

Description : Counters marked 1, 2, 3 are placed in a bag and one is drawn and replaced. -Maths 9th

Last Answer : (b) \(rac{7}{27}.\)Let S be the sample space of drawing a counter three times and replacing it each time. Then, n(S) = 3 3 3 = 27 Let A : Event of obtaining a total of 6 in the three draws of counters. Then, A = {(1, 2, 3), ... (2, 2, 2)} ⇒ n(A) = 7 ∴ P(A) = \(rac{n(A)}{n(S)}\) = \(rac{7}{27}.\)

Description : The colour of bag containing Portion for 110 UTS ? (i) Red (ii) Green (iii) Pink (iv) Black*

Last Answer : iv) Black*

Description : he colour of bag containing Portion for 90 UTS ? (i) Red (ii) Green * (iii) Pink (iv) Black

Last Answer : ii) Green *

Description : The colour of bag containing Portion for 72 UTS ? (i) Pink (ii) Green (iii) Red * (iv) Black

Last Answer : (iii) Red *

Description : A card is drawn at random from a well shuffled pack of 52 cards -Maths 9th

Last Answer : (c) P(X) = P(Y) > P(Z) P(X) = \(rac{26}{52}\) + \(rac{4}{52}\) - \(rac{2}{52}\) = \(rac{28}{52}\) (∵ There are 26 black cards, 4 kings and 2 black kings)P(Y) = \(rac{13}{52}\) + \(rac{ ... }{52}\)(∵ There are 4 aces, 13 diamonds, 4 queens, 1 ace of diamond, 1 queen of diamond) ∴ P(X) = P(Y) > P(Z).

Description : There are 10 orange, 2 violet and 4 purple balls in a bag. All the 16 balls are drawn one by one and arranged in a row. Find out the number of different arrangements possible. A) 25230 B) 23420 C) 120120 D) 27720

Last Answer : Answer: C)  Number of different arrangements possible  = {16!} / {10! 2! 4!}  = {16×15×14×13×12×11×10×9×8×7×6×5×4×3×2 } /  {(10×9×8×7×6×5×4×3×2 ) (2) (4×3×2)}}  = {16×15×14×13×12×11} / {(2)(4×3×2)}  = {8×5×7×13×3×11}  = 120120

Description : Natalie had fourteen balls. Each one color. She alternated the colors each day, there was a blue, pink, purple, green, red, yellow, black, white, orange, turquoise, tan, neon pink, and brown. Each day of the ... the week will she go to Arby's? What ball will she have while she is at Arby's? -Riddles

Last Answer : She will go to Arby's on Monday, for that is the first day of the week and A is the first letter of the alphabet. So on Tuesday she would go to Burger King. On Wednesday she would go to Chick- ... because red is the first color of the rainbow. So on Tuesday she would have a Orange ball. And so on.

Description : A bowl contains 8 violet, 6 purple and 4 magenta balls. Three balls are drawn at random. Find out the number of ways of selecting the balls of different colours? A) 362 B) 2 48 C) 122 D) 192

Last Answer : Answer: D)  1 violet ball can be selected is 8C1 ways.  1 purple ball can be selected in 6C1 ways.  1 magenta ball can be selected in 4C1 ways.  Total number of ways = 8C1 × 6C1 × 4C1  = 8×6×4  = 192

Description : A box contains 3red, 8 blue and 5 green marker pens. If 2 marker pens are drawn at random from the pack, not replaced and then another pen is drawn. What is the probability of drawing 2 blue marker pens and 1 red marker pen? a) 3/20 b) 1/20 c) 7/20 d) 9/20

Last Answer : Answer: B) Probability of drawing 1 blue marker pen =8/16 Probability of drawing another blue marker pen = 7/15 Probability of drawing 1 red marker pen = 3/14 Probability of drawing 2 blue marker pens and 1 red marker pen = 8/16*7/15*3/14=1/20

Description : A pack contains 4 blue, 2 red and 3 black pens. If a pen is drawn at random from the pack, replaced and the process repeated 2 more times, what is the probability of drawing 2 blue pens and 1 black pen? a) 16/243 b) 16/283 c) 14/243 d) 23/729

Last Answer : a) 16/243

Description : Two cards are drawn from a pack of 52 cards. What is the probability that either both are red or both are kings ? -Maths 9th

Last Answer : Let S : Drawing 2 cards out of 52 card A : Drawing 2 red cards B : Drawing 2 kings A ∪ B : Drawing 2 red cards or 2 kings ∴ n(S) = 52C2 n(A) = 26C2 (∵ There are 26 red cards) n(B) = 4C2 ... \(rac{4 imes3}{52 imes51}\) - \(rac{2}{52 imes51}\) = \(rac{660}{2652}\) = \(rac{55}{221}.\)

Description : Consider a pack contains 2black, 9 white and 3 pink pencils. If a pencil is drawn at random from the pack, replaced and the process repeated 2 more times, What is the probability of drawing 2 black pencils and 1 pink pencil? a)3/ 49 b)3/686 c)3/14 d)3/545

Last Answer : Answer: B) Here, total number of pencils = 14 Probability of drawing 1 black pencil = 2/14 Probability of drawing another black pencil = 2/14 Probability of drawing 1 pink pencil = 3/14 Probability of drawing 2 black pencils and 1 pink pencil = 2/14 * 2/14 * 3/14 = 3/686

Description : Find the probability that the three cards drawn from a pack of 52 cards are all black ? -Maths 9th

Last Answer : Number of ways in which three cards can be drawn from a pack of 52 cards n(S) = 52C3. Let A : Event of drawing all the three cards as black Then, n(A) = 26C3 (∵There are 26 black cards)∴ P(A ... (rac{^{26}C_3}{^{52}C_3}\) = \(rac{26 imes25 imes24}{52 imes51 imes50}\) = \(rac{2}{17}.\)

Description : What are those orange or white balls that hang on power-lines above random roads?

Last Answer : ”...no airplane would ever be that low…” I’ve only seem them near airfields, so I think they are indeed aircraft warnings. Usually (in my experience) these markers are associated with smaller, general aviation landing strips, not commercial airports.

Description :  A carton contains 12 green and 8 blue bulbs .2 bulbs are drawn at random. Find the probability that they are of same colour. A) 91/47 B) 47/105 C) 47/95 D) 95/47

Last Answer : Answer: C) Let S be the sample space Then n(S) = no of ways of drawing 2 bulbs out of (12+8) = 20c2=20*19/2*1=190 Let E = event of getting both bulbs of same colour Then, n(E) = no of ways (2 bulbs out of 12) ... 12C2+ 8C2=(132/2)+(56/2) = 66+28 = 94 Therefore, P(E) = n(E)/n(S) = 94/190 = 47/95

Description : The cost of a toy horse is same as that of cost of 3 balls. Express this statement as a linear equation in two variables. Also draw its graph. -Maths 9th

Last Answer : Solution :-

Description : How many balls, each of radius 2 cm can be made from a solid sphere of lead of radius 8 cm ? -Maths 9th

Last Answer : No.of balls = Volume of share / Volume of each ball = 4 / 3π × 8 × 8 × 8 / 4 / 3π × 2 × 2 × 2 = 64

Description : How many balls, each of radius 2 cm can be made from a solid sphere of lead of radius 8 cm ? -Maths 9th

Last Answer : No.of balls = Volume of share / Volume of each ball = 4 / 3π × 8 × 8 × 8 / 4 / 3π × 2 × 2 × 2 = 64

Description : Five balls of different colours are to be placed in three boxes of different sizes. Each box can hold all five. In how many different ways -Maths 9th

Last Answer : According to the question, we have 5 balls to be placed in 3 boxes where no box remains emptyHence, we can have the following kinds of distribution firstly, where the distribution will be (3,1,1) that is, one box gets three ... go in second box is = 4 C 2 . Total no. of ways =90 Total:60+90=150.

Description : A cylindrical rod of iron whose height is eight times its radius is melted and cast into spherical balls each of half the radius of the cylinder. -Maths 9th

Last Answer : Let radius of iron rod = r ∴∴ Height = 8r ∴∴ Volume of iron rod =π×(r)2×8r⇒8πr3=π×(r)2×8r⇒8πr3 ⇒⇒ Radius of spherical ball =r2=r2 Volume of spherical ball =43π(r2)3=43π(r2)3 Let n balls are casted ∴n×43π(r38)=8πr3∴n×43π(r38)=8πr3 ⇒n6=8⇒n=48

Description : A cylindrical rod of iron whose radius is one-fourth of its height is melted and cast into spherical balls of the same radius as that of the cylinder. -Maths 9th

Last Answer : Let radius of cylindrical rod =r ⇒ height =4r Volume of cylindrical rod =πr2h =πr2(4r) =4πr3 Volume of spherical balls of radius r=34​πr3 No. of balls =34​πr34πr3​=

Description : Three identical balls fit snugly into a cylindrical can. The radius of the spheres is equal to the radius of the can and the balls just touch the -Maths 9th

Last Answer : hope its clear

Description :  Two cards are drawn at random from a pack of 52 cards.what is the probability that either both are Red or both are king? A) 52/221 B) 55/190 C) 55/221 D) 19/221

Last Answer : Answer: C) We have n(s) = 52C2 = 1326. Let A = event of getting both red cards B = event of getting both king A∩B = event of getting king of red cards n(A) = 26C2 = 325, n(B)= 4C2= 6 and n(A∩B) = 2C2 = 1 P(A ... S) = 1/1326 P(A∪B) = P(A) + P(B) - P(A∩B) = (325+6-1) / 1326 = 330/1326 = 55/221