Loss comparisons between fusion splices an mechanical splices
∙ A. 1:10  
∙ B. 10:1
∙ C. 20:1
∙ D. 1:20

1 Answer

Answer :

A. 1:10

Related questions

Description : What is the insertion loss of connector-type splices for a single mode fiber optics? ∙ a. 0.51 dB ∙ b. 0.31 dB ∙ c. 0.49 dB ∙ d. 0.38 dB

Last Answer : d. 0.38 dB

Description : How much is the power loss of the fusion splice? ∙ a. 0.1 dB or less ∙ b. 0.01 dB or less ∙ c. 1 dB or less ∙ d. 10 dB or less

Last Answer : a. 0.1 dB or less

Description : What is the average insertion loss of fusion splice in fiber optics? ∙ a. 0.09 dB ∙ b. 0.9 dB ∙ c. 0.19 dB ∙ d. 0.009 dB

Last Answer : ∙ b. 0.9 dB

Description : The mechanical splice attenuation loss is _____ dB or less ∙ a. 0.1 ∙ b. 0.01 ∙ c. 0.001 ∙ d. 1

Last Answer : a. 0.1

Description : What is the average loss in fiber splice? ∙ a. 0.10 dB ∙ b. 0.15 dB ∙ c. 0.20 dB ∙ d. 0.25 dB

Last Answer : 0.15 dB

Description : Splicing fibers means ∙ a. Fusion ∙ b. Butt ∙ c. Glue ∙ d. Both fusion and butt

Last Answer : . Both fusion and butt

Description : The mechanical splice is best suited for ∙ A. quicker installation under ideal condition ∙ B. minimum attenuation losses ∙ C. field service conditions ∙ D. situations in which cost of equipment is not a factor

Last Answer : D. situations in which cost of equipment is not a factor

Description : The coating in a fiber helps protect fiber from moisture, which reduces the possibility of the occurrence of a detrimental phenomenon called ∙ A. static fatigue ∙ B. mechanical fatigue ∙ C. stress fatigue ∙ D. coating fatigue

Last Answer : ∙ A. static fatigue

Description : When light strikes a flat polished end of a fiber, it produces a loss of ∙ a. 14 % ∙ b. 4 % ∙ c. 10 % ∙ d. 1 %

Last Answer : ∙ b. 4 %

Description : What is the spectral width of a standard LED? ∙ A. 20 to 40 nm ∙ B. 30 to 50 nm ∙ C. 10 to 30 nm ∙ D. 40 to 60 nm

Last Answer : 30 to 50 nm

Description : A positive lens with a focal length of 10 cm forms a real image of an object 20 am away from the lens. How far is the real image from the lens? ∙ a. 5 cm ∙ b. 10 cm ∙ c. 15 cm ∙ d. 20 cm

Last Answer : ∙ d. 20 cm

Description : The term power budgeting refers to ∙ A. the cost of cable, connectors, equipment and installation ∙ B. the loss of power due to defective components ∙ C. the total power available minus the attenuation losses ∙ D. the comparative costs of fiber and copper installations

Last Answer : C. the total power available minus the attenuation losses

Description : Cable attenuation is usually expressed in terms of ∙ A. loss per foot ∙ B. dB/km ∙ C. intensity per mile ∙ D. voltage drop per inch

Last Answer : . dB/km

Description : When connector losses, splice losses and coupler losses are added, what is the limiting factor? ∙ A. source power ∙ B. fiber attenuation ∙ C. connector and splice loss ∙ D. detector sensitivity

Last Answer : D. detector sensitivity

Description : For a single mode optical cable with 0.25 dB/km loss, determine the optical power 100 km from a 0.1-mW light source. ∙ A. -45 dBm ∙ B. -15 dBm ∙ C. -35 dBm

Last Answer : ∙ C. -35 dBm

Description : It is analogous to power dissipation to copper cables, impurities in the fiber absorb the light and covert it to heat. ∙ A. power loss ∙ B. absorption loss ∙ C. resistive loss ∙ D. heat loss

Last Answer : B. absorption loss

Description : Which of the following is not a factor in cable light loss? ∙ A. reflection ∙ B. absorption ∙ C. scattering ∙ D. dispersion

Last Answer : A. reflection

Description : Results in reduction in the power of light wave as it travels down the cable. ∙ A. power loss ∙ B. absorption loss ∙ C. resistive loss ∙ D. heat loss

Last Answer : A. power loss

Description : A fiber-optic cable has a loss of 15 dB/km. The attenuation in a cable 1000 ft. long is ∙ A. 4.57 dB ∙ B. 9.3 dB ∙ C. 24 dB ∙ D. 49.2 dB

Last Answer : A. 4.57 dB

Description : Fiber-optic cables with attenuation of 1.8, 3.4, 5.9 and 18 dB are linked together. The total loss is ∙ A. 7.5 dB ∙ B. 19.8 dB ∙ C. 29.1 dB ∙ D. 650 dB

Last Answer : C. 29.1 dB

Description : The dominant loss mechanisms in silica fiber are ∙ a. Absorption and radiation losses ∙ b. Absorption and Rayleigh scattering ∙ c. Coupling and radiation losses ∙ d. Radiation and modal dispersion

Last Answer : b. Absorption and Rayleigh scattering

Description : When light strikes a flat polished end of a fiber, the fiber loss produced can be reduced by ∙ a. Splicing ∙ b. Antireflection coating ∙ c. Insulation jacket ∙ d. All of these

Last Answer : ∙ b. Antireflection coating

Description : Which is not a possible cause of optical fiber loss? ∙ a. Impurities ∙ b. Glass attenuation ∙ c. Stepped index operation ∙ d. Microbending

Last Answer : ∙ c. Stepped index operation

Description : Under normal condition, a single fiber should not be used for a two-way communication mainly because of ∙ a. Loss ∙ b. Fading ∙ c. Noise ∙ d. Attenuation

Last Answer : ∙ c. Noise

Description : Band loss is ∙ a. A reduction in transmitter power caused by earth’s surface curvature ∙ b. A reduction in strength of the signal caused by folded dipole bends ∙ c. An attenuation increase caused by bends radiating from the side of the fiber ∙ d. All of these

Last Answer : c. An attenuation increase caused by bends radiating from the side of the fiber

Description : ________ is the result of photons of light that are absorbed by the atoms of the glass core molecules ∙ a. Ion resonance absorption ∙ b. Ultraviolet absorption ∙ c. Infrared absorption ∙ d. Absorption loss

Last Answer : c. Infrared absorption

Description : Fiber-optic cables with attenuations of 1.8, 3.4, 5.9, and 18 dB are linked together. The total loss is ∙ a. 7.5 dB ∙ b. 19.8 dB ∙ c. 29.1 dB ∙ d. 650 dB

Last Answer : ∙ c. 29.1 dB

Description : . A fiber-optic cable has a loss of 15 dB/km. The attenuation in a cable, 100 ft long is ∙ a. 4.57 dB ∙ b. 9.3 dB ∙ c. 24 dB ∙ d. 49.2 dB

Last Answer : ∙ a. 4.57 dB

Description : Cable attenuation is usually expressed in terms of ∙ a. Loss per foot ∙ b. dB/km ∙ c. intensity per mile ∙ d. voltage drop per inch

Last Answer : ∙ b. dB/km

Description : The loss in signal power as light travels down a fiber is called ∙ a. Dispersion ∙ b. Scattering ∙ c. Absorption ∙ d. Attenuation

Last Answer : ∙ d. Attenuation

Description : Single-mode step-index cable has a core diameter in the range of ∙ A. 100 to 1000 micrometer ∙ B. 50 to 100 micrometer ∙ C. 2 to 15 micrometer ∙ D. 5 to 20 micrometer

Last Answer : . 2 to 15 micrometer

Description : Approximately what is the frequency limit of the optical fiber? ∙ A. 20 MHz ∙ B. 1 MHz ∙ C. 100 MHz ∙ D. 40 GHz

Last Answer : ∙ D. 40 GHz

Description : . Which fiber-optic system is better? ∙ A. 3 repeaters ∙ B. 8 repeaters ∙ C. 11 repeaters ∙ D. 20 repeaters

Last Answer : A. 3 repeaters

Description : What is the frequency limit of an optical fiber? ∙ a. 20 GHz ∙ b. 30 GHz ∙ c. 40 GHz ∙ d. 50 GHz

Last Answer : ∙ c. 40 GHz

Description : Which fiber-optic system is better? ∙ a. 3 repeaters ∙ b. 8 repeaters ∙ c. 11 repeaters ∙ d. 20 repeaters

Last Answer : a. 3 repeaters

Description : Fiber optic cables operate at frequencies near ∙ a. 20 MHz ∙ b. 200 MHz ∙ c. 2G Hz ∙ d. 800 THz

Last Answer : ∙ d. 800 THz

Description : The term responsivity as it applies to a light detector is best described as ∙ A. the time required for the signal to go from 10 to 90 percent of maximum amplitude ∙ B. the ratio of the diode ... . the ratio of the input power to output power ∙ D. the ratio of output current to input current

Last Answer : the ratio of the diode output current to the input optical power

Description : Range of wavelengths of ultraviolet ∙ A. 670 nm to 10^3 nm ∙ B. 440 nm to 540 nm ∙ C. 110 nm to 240 nm ∙ D. 10 nm to 390 nm

Last Answer : D. 10 nm to 390 nm

Description : ange of wavelength of visible light ∙ A. 670 nm to 10^3 nm ∙ B. 440 nm to 540 nm ∙ C. 110 nm to 240 nm ∙ D. 390 nm to 770 nm

Last Answer : D. 390 nm to 770 nm

Description : Range of infrared ∙ A. 360 nm to 440 nm ∙ B. 670 nm to 10^3 nm ∙ C. 110 nm to 240 nm ∙ D. 770 nm to 10^6 nm

Last Answer : D. 770 nm to 10^6 nm

Description : What is the photon energy for an infrared wave with frequency of 1012 Hz? ∙ a. 10.6 x 1034 joules ∙ b. 6.63 x 10-34 joules ∙ c. 6.63 x 10-22 joules ∙ d. 10.6 x 1022 joules

Last Answer : ∙ c. 6.63 x 10-22 joules

Description : It refers to the abrupt of change in refractive index from core to clad ∙ A. step index ∙ B. graded index ∙ C. semi-graded index ∙ D. half step index

Last Answer : ∙ A. step index

Description : Which type of fiber-optic cable is the most widely used? ∙ A. single-mode step-index ∙ B. multimode step-index ∙ C. single-mode graded index ∙ D. multimode graded index

Last Answer : B. multimode step-index

Description : Which of the following cables will have the highest launch power capability? ∙ A. 50/125/0.2 ∙ B. 85/125/0.275 ∙ C. 62.5/125/0.275 ∙ D. 100/140/0.3

Last Answer : A. 50/125/0.2

Description : Refraction is the ∙ A. bending of light ∙ B. reflection of light waves ∙ C. distortion of light waves ∙ D. diffusion of light waves

Last Answer : A. bending of light

Description : The wavelength of a visible extends from ∙ A. 0.8 to 1.6 um ∙ B. 400 to 750 nm ∙ C. 200 to 660 nm ∙ D. 700 to 1200 nm

Last Answer : B. 400 to 750 nm

Description : Which of the following is not a part of the optical spectrum? ∙ A. infrared ∙ B. ultraviolet ∙ C. visible color ∙ D. x-rays

Last Answer : ∙ D. x-rays

Description : The main benefit of light wave communications over microwaves or any other communications media are ∙ A. lower cost ∙ B. better security ∙ C. wider bandwidth ∙ D. freedom from interface

Last Answer : C. wider bandwidth

Description : EMD is best described by which statement? ∙ A. 70 percent of the core diameter and 70% of the fiber NA should be filled with light. ∙ B. 70 percent of the fiber diameter and 70% of the ... be measured at the output. ∙ D. 70 percent of the unwanted wavelengths should be attenuated by the fiber.

Last Answer : 70 percent of the core diameter and 70% of the fiber NA should be filled with light.