When the steel bars are embedded in concrete. The concrete after setting, adheres to the surface of the bars and thus resist any force that tends to pull or push this road. The intensity of this adhesive force is called.
(a) Bond stress
(b) Shear stress
(c) Compressive stress
(d) All of these

1 Answer

Answer :

(a) Bond stress

Related questions

Description : The main reason for providing number of reinforcing bars at a support in a simply supported beam is to resist in that zone (A) Compressive stress (B) Shear stress (C) Bond stress (D) Tensile stress

Last Answer : Answer: Option C

Description : Pick up the incorrect statement from the following: Tensile reinforcement bars of a rectangular beam (A) Are curtailed if not required to resist the bending moment (B) Are bent up at suitable ... to serve as shear reinforcement (D) Are maintained at bottom to provide at least local bond stress

Last Answer : Answer: Option C

Description : The purpose of reinforcement in pre-stressed concrete is (A) To provide adequate bond stress (B) To resist tensile stresses (C) To impart initial compressive stress in concrete (D) All of the above

Last Answer : Answer: Option C

Description : The longitudinal shearing stresses acting on the surface between the steel and concrete are called. (a) Bond stress (b) Tensile stresses (c) Compressive stresses (d) None of these

Last Answer : (a) Bond stress

Description : Steel beam theory is used for (A) Design of simple steel beams (B) Steel beams encased in concrete (C) Doubly reinforced beams ignoring compressive stress in concrete (D) Beams if shear exceeds 4 times allowable shear stress

Last Answer : Answer: Option C

Description : In a singly reinforced concrete beam, as the load increases. (a) Only concrete will resist tension (b) Only steel bars will resist tension. (c) Both concrete and steel will resist tension. (d) Both concrete and steel will resist compression.

Last Answer : (b) Only steel bars will resist tension.

Description : In a singly reinforced concrete beam, if the load is vey small. (a) Only concrete will resist tension (b) Only steel bars will resist tension. (c) Both concrete & steel will resist tension. (d) Both concrete & steel will resist compression.

Last Answer : (c) Both concrete & steel will resist tension.

Description : A short column 20 cm 20 cm in section is reinforced with 4 bars whose area of cross section is 20 sq. cm. If permissible compressive stresses in concrete and steel are 40 kg/cm2 and 300 kg/cm2 , the Safe load on ... should not exceed (A) 4120 kg (B) 41,200 kg (C) 412,000 kg (D) None of these

Last Answer : Answer: Option B

Description : Plain cement concrete is strong in taking (a) Compressive stress. (b) Tensile stress (c) Shear stress (d) All of these

Last Answer : (a) Compressive stress.

Description : Reinforced cement concrete is equally strong in taking (a) Tensile and compressive stress (b) Compressive and shear stresses. (c) Tensile, compressive and shear stresses. (d) Tensile and shear stresses.

Last Answer : (c) Tensile, compressive and shear stresses.

Description : If the bond stress developed in a reinforced concrete beam is more than permissible value, it can be brought down by. (a) Increasing the depth of beam (b) Increasing the number of bars. (c) Decreasing the diameter of the bars (d) All of these

Last Answer : (d) All of these

Description : The ultimate average anchorage bond stress for plain bars in tension is _______ if the grade of concrete is M20 [ A ] 1.60 N/mm2 [ B ] 1.92 N/mm2 [ C ] 2.24 N/mm2 [ D ] 2.40 N/mm2

Last Answer : [ B ] 1.92 N/mm2

Description : The ultimate average anchorage bond stress for plain bars in tension is _______ if the grade of concrete is M20 [ A ] 1.60 N/mm2 [ B ] 1.92 N/mm2 [ C ] 2.24 N/mm2 [ D ] 2.40 N/mm2

Last Answer : [ B ] 1.92 N/mm2

Description : As per IS: 456, permissible bond stress for plain bars in tension, in working stress method, where M20, is the grade of concrete [ A ] 0.6 N/mm2 [ B ] 0.8 N/mm2 [ C ] 1.0 N/mm2 [ D ] 1.2 N/mm2

Last Answer : [ B ] 0.8 N/mm2

Description : When shear stress exceeds the permissible limit in a slab, then it is reduced by (A) Increasing the depth (B) Providing shear reinforcement (C) Using high strength steel (D) Using thinner bars but more in number

Last Answer : Answer: Option A

Description : If At is the area of steel cross-section, t is working stress, L is width of road and W is weight of slab per square metre, the spacing of the tie bars for a longitudinal joint, is (A) (100 At × t)/WL (B) 100 At/tWL (C) (100 WAt × t)/tL (D) 100 WL/At t

Last Answer : Answer: Option D

Description : If a concrete column 200 200 mm in cross-section is reinforced with four steel bars of 1200  mm2  total cross-sectional area. Calculate the safe load for the column if permissible stress in  concrete is 5 N/mm2 ... 15 Ec (A) 264 MN  (B) 274 MN  (C) 284 MN  (D) 294 MN 

Last Answer : (C) 284 MN 

Description : longitudinal bars and lateral stirrups, is (A) Stress in concrete × area of concrete (B) Stress in steel × area of steel (C) Stress in concrete × area of concrete + Stress in steel × area of steel (D) None of these

Last Answer : Answer: Option C

Description : Inc case of prestressed concrete members, the bursting stresses develop at (a) Bond zone (b) Maximum bending moment zone (c ) Maximum shear stress zone (d) Anchorage zone

Last Answer : (d) Anchorage zone

Description : If is the sectional area of a pre-stressed rectangular beam provided with a tendon pre-stressed by a force through its centroidal longitudinal axis, the compressive stress in concrete, is (A) P/A (B) A/P (C) P/2A (D) 2A/P

Last Answer : Answer: Option A

Description : Steel rods are used in reinforced concrete to increase its __________ strength. (A) Shear (B) Tensile (C) Compressive (D) None of these

Last Answer : (B) Tensile

Description : The moment of resistance of an over-reinforcement section is determined on the basis of (a) Compressive force developed in concrete (b) Tensile force developed in steel (c) Both (a) & (b) (d) None of these

Last Answer : (a) Compressive force developed in concrete

Description : The moment of resistance of an under- reinforced section is computer on the basis of (a) Compressive force developed in concrete (b) Tensile force developed in steel (c) Both (a) & (b) (d) All the above

Last Answer : (b) Tensile force developed in steel

Description : Pick up the incorrect statement from the following. The intensity of horizontal shear stress at the elemental part of a beam section, is directly proportional to (A) Shear force (B) Area of the section ... . of the area from its neutral axis (D) Moment of the beam section about its neutral axis

Last Answer : Answer: Option D

Description : Pick up the correct statement from the following: (A) The bent up bars at a support resist the negative bending moment (B) The bent up bars at a support resist the sharing force (C) The bending of bars near supports is generally at 45° (D) All the above

Last Answer : (D) All the above

Description : A compound bar consists of two bars of equal length. Steel bar cross-section is 3500 mm2 and that  of brass bar is 3000 mm2 . These are subjected to a compressive load 100,000 N. If Eb = 0.2  MN/mm2  and Eb = 0.1 ... 6 N/mm2 s  = 12 N/mm2 (D) b = 5 N/mm2 s  = 10 N/mm

Last Answer : (A) b = 10 N/mm2 s  = 20 N/mm

Description : The maximum twisting moment a shaft can resist, is the product of the permissible shear stress and (A) Moment of inertia (B) Polar moment of inertia (C) Polar modulus (D) Modulus of rigidly

Last Answer : (C) Polar modulus

Description : For an ordinary Portland cement (A) Residual does not exceed 10% when sieved through IS Sieve No. 9 (B) Soundness varies from 5 to 10 mm (C) Initial setting time is not less than 30 minutes (D) Compressive stress after 7 days, is not less than 175 kg/cm2

Last Answer : (C) Initial setting time is not less than 30 minutes

Description : In a beam the local bond stress Sb, is equal to (A) Shear force/(Leaver arm Total perimeter of reinforcement) (B) Total perimeter of reinforcement/(Leaver arm Shear force) (C) ... force Total perimeter of reinforcement) (D) Leaver arm/(Bending moment Total perimeter of reinforcement)

Last Answer : Answer: Option A

Description : Allowable shear strength of concrete, depends upon (A) Shear strength (B) Tensile strength (C) Compressive strength (D) None of these

Last Answer : Answer: Option A

Description : When the helical compression spring is subjected to axial compressive force, the type of stress induced in the spring wire is, (A) Tensile stress (B) Compressive stress (C) Bending stress (D) Torsional shear stress

Last Answer : (D) Torsional shear stress

Description : When the helical extension spring is subjected to axial tensile force, the type of stress induced in the spring wire is, (A) Tensile stress (B) Compressive stress (C) Bending stress (D) Torsional shear stress

Last Answer : (D) Torsional shear stress

Description : The reinforced concrete beam which has width 25 cm, lever arm 40 cm, shear force 6t/cm2 , safe shear stress 5 kg/cm2 and B.M. 24 mt, (A) Is safe in shear (B) Is unsafe in shear (C) Is over safe in shear (D) Needs redesigning

Last Answer : Answer: Option B

Description : The maximum shear stress (q) in concrete of a reinforced cement concrete beam is (A) Shear force/(Lever arm × Width) (B) Lever arm/(Shear force × Width) (C) Width/(Lever arm × Shear force) (D) (Shear force × Width)/Lever arm

Last Answer : Answer: Option A

Description : A pre-stressed concrete member is preferred because (A) Its dimensions are not decided from the diagonal tensile stress (B) Large size of long beams carrying large shear force need not be adopted (C) Removal of cracks in the members due to shrinkage (D) All the above

Last Answer : Answer: Option D

Description : In a singly reinforced beam (A) Compression is borne entirely by concrete (B) Steel possesses initial stresses when embedded in concrete (C) Plane sections transverse to the centre line ... Elastic moduli for concrete and steel have different values within the limits of deformation of the beam

Last Answer : Answer: Option C

Description : The application of elastic theory to the beams is based on the assumption that (a) At any cross-section, plane sections before bending remain plane after bending (b) All tensile stresses are taken ... reinforcement is free from initial stresses when it is embedded in concrete. (d) All of the above

Last Answer : (d) All of the above

Description : When equal and opposite forces applied to a body, tend to elongate it, the stress so produced, is called (A) Shear stress (B) Compressive stress (C) Tensile stress (D) Transverse stress

Last Answer : (C) Tensile stress

Description : A fluid in equilibrium can't sustain (A) Tensile stress (B) Compressive stress (C) Shear stress (D) Bending stress

Last Answer : Answer: Option C

Description : An R.C.C. beam of 6 m span is 30 cm wide and has a lever arm of 55 cm. If it carries a U.D.L. of 12 t per m and allowable shear stress is 5 kg/cm2 , the beam (A) Is safe in shear (B) Is safe with stirrups (C) Is safe with stirrups and inclined bars (D) Needs revision of section

Last Answer : Answer: Option D

Description : The property of fresh concrete, in which the water in the mix tends to rise to the surface while placing and compacting, is called (A) Segregation (B) Bleeding (C) Bulking (D) Creep

Last Answer : Answer: Option B

Description : If the permissible compressive stress for a concrete in bending is C kg/m2 , the modular ratio is (A) 2800/C (B) 2300/2C (C) 2800/3C (D) 2800/C

Last Answer : Answer: Option C

Description : The modular ratio m of a concrete whose permissible compressive stress is C, may be obtained from the equation. (A) m = 700/3C (B) m = 1400/3C (C) m = 2800/3C (D) m = 3500/3C

Last Answer : Answer: Option C

Description : In limit state design of concrete for flexure, the area of stress block is taken as (a) 0.530 fck. Xu (b) 0.446 fck . Xu ( c) 0.420 fck .Xu (d) 0.360 fck . Xu Where fck is characteristic compressive strength of concrete and Xu is the depth of neutral axis from top.

Last Answer : (d) 0.360 fck . Xu

Description : If the permissible compressive stress for a concrete in bending is ckg/m2, the modular ratio is (a) 2800/C (b) 2300/C (c) 2800/3C (d) 2800/4C

Last Answer : (d) 2800/4C

Description : As per IS: 456, permissible direct compressive stress M20 grade concrete in working stress method of designer [ A ] 5.0 N/mm2 [ B ] 7.0 N/mm2 [ C ] 10.0 N/mm2 [ D ] 20.0 N/mm2

Last Answer : [ A ] 5.0 N/mm2

Description : In working stress method of design, permissible compressive bending stress for M20 grade concrete is given by [ A ] 5.0 N/mm2 [ B ] 7.0 N/mm2 [ C ] 10.0 N/mm2 [ D ] 20 N/mm2

Last Answer : [ B ] 7.0 N/mm2

Description : In working stress design, permissible bond stress in the case of deformed bars is more than that in plain bars by (A) 10 % (B) 20 % (C) 30 % (D) 40 %

Last Answer : (D) 40 %

Description : The average permissible stress in bond for plain bars in tension is (A) Increased by 10% for bars in compression (B) Increased by 25% for bars in compression (C) Decreased by 10% for bars in compression (D) Decreased by 25% for bars in compression

Last Answer : Answer: Option B

Description : The bond stress for deformed bars is more than that in plain bars by [ A ] 25% [ B ] 40% [ C ] 60% [ D ] 50%

Last Answer : [ B ] 40%