Allowable shear strength of concrete, depends upon
(A) Shear strength
(B) Tensile strength
(C) Compressive strength
(D) None of these

1 Answer

Answer :

Answer: Option A

Related questions

Description : Steel beam theory is used for (A) Design of simple steel beams (B) Steel beams encased in concrete (C) Doubly reinforced beams ignoring compressive stress in concrete (D) Beams if shear exceeds 4 times allowable shear stress

Last Answer : Answer: Option C

Description : Steel rods are used in reinforced concrete to increase its __________ strength. (A) Shear (B) Tensile (C) Compressive (D) None of these

Last Answer : (B) Tensile

Description : Plain cement concrete is strong in taking (a) Compressive stress. (b) Tensile stress (c) Shear stress (d) All of these

Last Answer : (a) Compressive stress.

Description : Reinforced cement concrete is equally strong in taking (a) Tensile and compressive stress (b) Compressive and shear stresses. (c) Tensile, compressive and shear stresses. (d) Tensile and shear stresses.

Last Answer : (c) Tensile, compressive and shear stresses.

Description : Slump test of concrete is a measure of its (A) Consistency (B) Compressive strength (C) Tensile strength (D) Impact value

Last Answer : (A) Consistency

Description : Slump test of concrete is a measure of its (A) Consistency (B) Compressive strength (C) Tensile strength (D) Impact value

Last Answer : (A) Consistency

Description : A higher modular ratio shows (A) Higher compressive strength of concrete (B) Lower compressive strength of concrete (C) Higher tensile strength of steel (D) Lower tensile strength of steel

Last Answer : Answer: Option B

Description : Modulus of rupture of concrete is a measure of (A) Flexural tensile strength (B) Direct tensile strength (C) Compressive strength (D) Split tensile strength

Last Answer : Answer: Option A

Description : Normally, the tensile strength of concrete is about____________of its compressive strength (a) 10 to 15% (b) 15 to 20% (c) 20 to 25% (d) 25 to 30%

Last Answer : (a) 10 to 15%

Description : The tensile strength of concrete is about ________ of its compressive strength [ A ] 10% to 15% [ B ] 30% to 40% [ C ] 50% [ D ] 60% to 75%

Last Answer : [ A ] 10% to 15%

Description : Slump test of concrete is a measure of its [ A ] Consistency [ B ] Compressive strength [ C ] Tensile strength [ D ] Impact value

Last Answer : [ A ] Consistency

Description : The parallel fillet welded joint is designed for (a) tensile strength (b) compressive strength (c) bending strength (d) shear strength

Last Answer : (d) shear strength

Description : he transverse fillet welded joints are designed for (a) tensile strength (b) compressive strength (c) bending strength (d) shear strength

Last Answer : (a) tensile strength

Description : The allowable tensile stress in mild steel stirrups, reinforced cement concrete, is (A) 1400 kg/cm2 (B) 190 kg/cm2 (C) 260 kg/cm2 (D) 230 kg/cm

Last Answer : Answer: Option A

Description : The value of Poison’s ratio depends upon (a) Nature of load, tensile or compressive (b) Magnitude of load (c) Material of the test specimen (d) Dimensions of the test specimen

Last Answer : (c) Material of the test specimen

Description : Steel rods are normally used for concrete reinforcement because concrete and steel have almost equal (A) Tensile strength (B) Compressive strength (C) Young's modulus (D) Thermal co-efficient of expansion

Last Answer : (D) Thermal co-efficient of expansion

Description : Maximum allowable shear stress for M25 grade concrete is [ A ] 2.5 N/mm2 [ B ] 2.8 N/mm2 [ C ] 3.1 N/mm2 [ D ] 3.5 N/mm2

Last Answer : [ C ] 3.1 N/mm2

Description : In prestressed concrete members, the shear force depends upon (a) Distributed load (b) Torsion (c) Concentrated load (d) Variation in net bending moment

Last Answer : (d) Variation in net bending moment

Description : When equal and opposite forces applied to a body, tend to elongate it, the stress so produced, is called (A) Shear stress (B) Compressive stress (C) Tensile stress (D) Transverse stress

Last Answer : (C) Tensile stress

Description : The under mentioned type is simple strain (A) Tensile strain (B) Compressive strain (C) Shear strain (D) All the above

Last Answer : (D) All the above

Description : If a three hinged parabolic arch carries a uniformly distributed load on its entire span, every section of the arch resists. (A) Compressive force (B) Tensile force (C) Shear force (D) Bending moment

Last Answer : (A) Compressive force

Description : A fluid in equilibrium can't sustain (A) Tensile stress (B) Compressive stress (C) Shear stress (D) Bending stress

Last Answer : Answer: Option C

Description : The main reason for providing number of reinforcing bars at a support in a simply supported beam is to resist in that zone (A) Compressive stress (B) Shear stress (C) Bond stress (D) Tensile stress

Last Answer : Answer: Option C

Description : Allowable bearing pressure for a foundation depends upon (A) Allowable settlement only (B) Ultimate bearing capacity of soil only (C) Both allowable settlement and ultimate bearing capacity (D) None of above

Last Answer : (C) Both allowable settlement and ultimate bearing capacity

Description : In symmetrically reinforced sections, shrinkage stresses in concrete and steel are respectively (A) Compressive and tensile (B) Tensile and compressive (C) Both compressive (D) Both tensile

Last Answer : Answer: Option D

Description : The purpose of reinforcement in pre-stressed concrete is (A) To provide adequate bond stress (B) To resist tensile stresses (C) To impart initial compressive stress in concrete (D) All of the above

Last Answer : Answer: Option C

Description : The longitudinal shearing stresses acting on the surface between the steel and concrete are called. (a) Bond stress (b) Tensile stresses (c) Compressive stresses (d) None of these

Last Answer : (a) Bond stress

Description : The moment of resistance of an over-reinforcement section is determined on the basis of (a) Compressive force developed in concrete (b) Tensile force developed in steel (c) Both (a) & (b) (d) None of these

Last Answer : (a) Compressive force developed in concrete

Description : The moment of resistance of an under- reinforced section is computer on the basis of (a) Compressive force developed in concrete (b) Tensile force developed in steel (c) Both (a) & (b) (d) All the above

Last Answer : (b) Tensile force developed in steel

Description : Pick up the correct statement from the following: (A) Water enables chemical reaction to take place with cement (B) Water lubricates the mixture of gravel, sand and cement (C) Strength of concrete structure largely depends upon its workability (D) All the above

Last Answer : (D) All the above

Description : According to Water-Cement Ratio Law, the strength of workable plastic concrete (A) Depends upon the amount of water used in the mix (B) Does not depend upon the quality of cement mixed with aggregates (C) Does not depend upon the quantity of cement mixed with aggregates (D) All the above

Last Answer : Answer: Option D

Description : Strength of cement concrete primarily depends upon (A) Quality of water (B) Quantity of aggregate (C) Quantity of cement (D) Water-cement

Last Answer : Answer: Option D

Description : According to the rule of water cement ratio, the strength of concrete wholly depends upon. (a) The quality of cement. (b) The quality of cement mixed with aggregate. (c) The amount of water used in preparation of concrete mix. (d) All of the above

Last Answer : (c) The amount of water used in preparation of concrete mix.

Description : The strength of durability of concrete depends upon. (a) Size of aggregates (b) Grading of aggregates (c) Moisture contents of aggregates (d) All of these.

Last Answer : (d) All of these.

Description : The strength and quality of concrete depends upon (i)Grading of aggregates (ii)Shape of aggregates (iii)Surface area of aggregates (iv)Surface texture of aggregates [ A ] i, ii and iv [ B ] ii, iii and iv [ C ] i, iii and iv [ D ] i, ii, iii and iv

Last Answer : [ D ] i, ii, iii and iv

Description : Le-Chatelier's device is used for determining the (A) Setting time of cement (B) Soundness of cement (C) Tensile strength of cement (D) Compressive strength of cement

Last Answer : Answer: Option B

Description : Compared to mild steel, cast iron has (i) High compressive strength (ii) High tensile strength (iii) Low compressive strength (iv) Low tensile strength The correct answer is (A) (i) and (ii) (B) (ii) and (iii) (C) (iii) and (iv) (D) (i) and (iv)

Last Answer : Answer: Option D

Description : For testing compressive and tensile strength of cement, the cement mortar is made by mixing cement and standard sand in the proportions of (A) 1 : 2 (B) 1 : 3 (C) 1 : 4 (D) 1 : 6

Last Answer : Answer: Option B

Description : When the steel bars are embedded in concrete. The concrete after setting, adheres to the surface of the bars and thus resist any force that tends to pull or push this road. The intensity of this adhesive force is called. (a) Bond stress (b) Shear stress (c) Compressive stress (d) All of these

Last Answer : (a) Bond stress

Description : The percentage elongation and the percentage reduction in area depends upon (a) Tensile strength of the material (b) Ductility of the material (c) Toughness of the material (d) None of these

Last Answer : B

Description : The spokes of the flywheel are subjected to 1. direct shear stress 2. torsional shear stress 3. tensile stress 4. compressive stress

Last Answer : 3. tensile stress

Description : The rim of the flywheel is subjected to, 1. direct tensile stress and bending stress 2. torsional shear stress and bending stress 3. direct shear stress and bending stress 4. compressive stress and bending stress

Last Answer : 1. direct tensile stress and bending stress

Description : The spokes of the flywheel are subjected to, (A) Direct shear stress (B) Torsional shear stress (C) Tensile stress (D) Compressive stress

Last Answer : (C) Tensile stress

Description : When the helical torsion spring is subjected to torque, the type of stress induced in the spring wire is, (A) Tensile stress (B) Compressive stress (C) Bending stress (D) Torsional shear stress

Last Answer : (C) Bending stress

Description : When the helical compression spring is subjected to axial compressive force, the type of stress induced in the spring wire is, (A) Tensile stress (B) Compressive stress (C) Bending stress (D) Torsional shear stress

Last Answer : (D) Torsional shear stress

Description : When the helical extension spring is subjected to axial tensile force, the type of stress induced in the spring wire is, (A) Tensile stress (B) Compressive stress (C) Bending stress (D) Torsional shear stress

Last Answer : (D) Torsional shear stress

Description : Parallel fillet welds are under (i) Shear stress (ii)Compressive stress (iii)Tensile stress (iv)None

Last Answer : (i) Shear stress

Description : Transverse fillet welds are under (i) Bending and shear stresses (ii)Compressive and torsion shear stresses (iii)Tensile and compressive stresses (iv)None

Last Answer : (iv)None

Description : Transverse fillet welds are under (i) Shear stress (ii) Compressive stress (iii) Tensile stress

Last Answer : (iii) Tensile stress

Description : Butt welds are under (i) Shear stress (ii) Compressive stress (iii) Tensile stress

Last Answer : (iii) Tensile stress