Which of the following
compressibility factor of ideal gas
 a. 1
 b. 2
 c. 1.5
 d. 0

1 Answer

Answer :

1

Related questions

Description : The compressibility factor, x, is used for predicting the behavior of nonideal gases. How is the compressibility ty factor defined relative to an ideal gas? (subscript c refers to critical value)  A. ... compressibility factor, x, is an dimensionless constant given by pV=zRT. Therefore z = pV / RT

Last Answer : z = pV/ RT

Description : What is used for predicting the behavior of non-ideal gases?  a. Compressibility factor  b. Expansivity factor  c. Emissivity factor  d. Van-d-whal’s factor

Last Answer : Compressibility factor

Description : If the Kelvin temperature of an ideal gas is doubled, what happens to the rms speed of the molecules in the gas?  a. it increases by a factor of square root of 2  b. it increases by a factor of 2  c. it increases by factor of 4  d. none of the above

Last Answer : it increases by a factor of square root of 2

Description : In the equation Pv = RT, the constant of proportionality R is known as ______.  A. Universal gas constant  B. Gas constant  C. Ideal gas factor  D. Gas index

Last Answer : Gas constant

Description : 3.0 lbm of air are contained at 25 psia and 100 ˚F. Given that Rair = 53.35 ft-lbf/lbm- ˚F, what is the volume of the container?  A.10.7 ft^3  B.14.7 ft^3  C.15 ft^3  D.24.9 ft^3 Formula: use the ideal gas law pV = mRT T = (100 +460) ˚R V = mRT/p

Last Answer : 24.9 ft^3

Description : An ideal gas of volume 1liter and pressure 10 bar undergoes a quasistatic adiabatic expansion until the pressure drops to 1 bar. Assume γ to be 1.4 what is the final volume?  a. 3.18 l  b. 4.18 l  c. 5.18 l  d. 6.18 l

Last Answer : 5.18 l

Description : The volume of a gas is directly proportional to the number of molecules of the gas.  a. Ideal gas law  b. Boyle-Mariotte Law  c. Avogadro’s Hypothesis  d. Gay-Lussac’s Law of combining Volumes

Last Answer : Avogadro’s Hypothesis

Description : The molecular number density of an ideal gas at standard temperature and pressure in cm3  a. Froude number  b. Loschmidt number  c. Mach number  d. Reynold number

Last Answer : Loschmidt number

Description : The volume of a gas under constant pressure increases or decrease with temperature.  a. Gay- Lussac’s Law  b. Ideal Gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Charles’ Law

Description : An ideal gas is compressed in a cylinder so well insulated that there is essentially no heat transfer. The temperature of gas  a. Remains constant  b. increases  c. decreases  d. is basically zero

Last Answer : increases

Description : A law relating the pressure, temperature and volume of an ideal gas  a. Gay-Lussac’s Law  b. Ideal gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Ideal gas Law

Description : An ideal gas is compresses isothermally. The enthalpy change is  a. Always negative  b. Always positive  c. zero  d. undefined

Last Answer : zero

Description : If the initial volume of an ideal gas is compressed to one-half its original volume and to twice its original temperature, the pressure:  a. doubles  b. halves  c. quadruples  d. triples

Last Answer : quadruples

Description : To what conditions does a gas behave like an ideal gas?  a. low temperature and low pressure  b. low temperature and high pressure  c. high temperature and low pressure  d. high temperature and high pressure

Last Answer : high temperature and low pressure

Description : Regardless of the process, the change in enthalpy firm moles of ideal gas is  a. Heat  b. Enthalpy  c. Entropy  d. Density

Last Answer : Heat

Description : p1V1= p2V2  a. Charle's Law  b. Boyle's Law  c. Ideal Gas Law  d. Joule's Law

Last Answer : Boyle's Law

Description : What mass of nitrogen is contained in a10 ft3 vessel at a pressure of 840atm and 820°R? Make a computation by using ideal gas equation.  a. 194lb  b. 214lb  c. 394 lb  d. 413lb formula: m=pV /RT

Last Answer : 394 lb

Description : An ideal gas at 45psig and 80ºF is heated in the close container to 130ºF. What is the final pressure?  a. 65.10 psi  b. 65.11 psi  c. 65.23 psi  d. 61.16 psi P1V1/T1= P2V2/T2;V = Constant

Last Answer : 65.23 psi

Description : If air is at pressure, p, of 3200 lbf/ft2 , and at a temperature, T, of 800 ˚R, what is the specific volume, v? (R=5303 ft-lbf/lbm-˚R, and air can be modeled as an ideal gas.)  A.9.8 ft^3/lbm  B.11.2 ft^3/lbm  C.13.33 ft^3/lbm  D.14.2 ft^3/lbm Formula: pv = RT v = RT / p

Last Answer : 13.33 ft^3/lbm

Description : An ideal gas is maintained at constant temperature. If the pressure on the gas is doubled, the volume is  a. increased fourfold  b. doubled  c. reduced by half  d. decreased by a quarter

Last Answer : reduced by half

Description : The volume of an ideal gas is directly proportional to its  a. pressure  b. Celsius temperature  c. Kelvin temperature  d. Fahrenheit temperature

Last Answer : Kelvin temperature

Description : The distribution of particle speeds in an ideal gas at a given temperature.  a. velocity of propagation  b. escape velocity  c. Maxwell speed Distribution  d. terminal velocity

Last Answer : Maxwell speed Distribution

Description : Which is NOT a correct statement?  A. A superheated vapor will not condense when small amount of heat re removed  B. An ideal gas is a gas that is not a superheated vapor  C. A saturated ... absorb as much heat as it can without vaporizing  D. Water at 1 atm and room temperature is subcooled

Last Answer : An ideal gas is a gas that is not a superheated vapor

Description : An ideal gas whose specific heats are constant is called _____.  A. Perfect gas  B. Natural gas  C. Artificial gas  D. Refined gas

Last Answer : Perfect gas

Description : Considering one mole of any gas, the equation of state of ideal gases is simply the ______ law.  A. Gay-Lussac law  B. Dulong and Petit  C. Avogadro’s  D. Henry’s

Last Answer : Avogadro’s

Description : “At constant pressure, the volume of a gas is inversely proportional to the pressure”. This is known as ______.  A. Boyle’s Law  B. Charles’s Law  C. Gay-Lussac Law  D. Ideal gas law

Last Answer : Boyle’s Law

Description : Which of the following is the Ideal gas law (equation)?  A. V/T = K  B. V= k*(1/P)  C. P1/T1 = P2/T2  D. PV = nRT

Last Answer : PV = nRT

Description : Which of the following statements is TRUE for an ideal gas, but not for a real gas?  A. PV = nRT  B. An increase in temperature causes an increase in the kinetic energy of the gas  C. The ... same as the volume of the gas as a whole  D. No attractive forces exists between the molecule of a gas

Last Answer : PV = nRT

Description : The temperatures of the ideal gas temperature scale are measured by using a ______.  A. Constant-volume gas thermometer  B. Constant-mass gas thermometer  C. Constant-temperature gas thermometer  D. Constant-pressure gas thermometer

Last Answer : Constant-volume gas thermometer

Description : What temperature scale is identical to the Kelvin scale?  A. Ideal gas temperature scale  B. Ideal temperature scale  C. Absolute gas temperature scale  D. Triple point temperature scale

Last Answer : Ideal gas temperature scale

Description : According to Avogadro's law  A. the product of the gas constant and the molecular mass of an ideal gas is constant  B. the sum of partial pressure of the mixture of two gases is sum of the ... all gases, at the same temperature and pressure, contain equal number of molecules  D. all of the above

Last Answer : Answer: C

Description : The pressure exerted by an ideal gas is __________ of the kinetic energy of all the molecules contained in a unit volume of gas.  A.one-half  B.one-third  C.two-third  D.three-fourth

Last Answer : Answer: C

Description : According to Avogadro's Hypothesis  (a) the molecular weights of all the perfect gases occupy the same volume under same conditions of pressure and temperature  (b) the sum of partial pressure of ... gases have two values of specific heat  (e) all systems can be regarded as closed systems.

Last Answer : Answer : a

Description : An ideal gas as compared to a real gas at very high pressure occupies  (a) more volume  (b) less volume  (c) same volume  (d) unpredictable behaviour  (e) no such correlation.

Last Answer : Answer : a

Description : Ideal process are ________ process  a. Irreversible  b. Reversible  c. Isothermal  d. Isometric

Last Answer : Reversible

Description : What is a heat engine that operates on the reversible Carnot cycle called?  A. Carnot heat engine  B. Ideal heat engine  C. Most efficient heat engine  D. Best heat engine

Last Answer : Carnot heat engine

Description : The ideal efficiency of a Brayton cycle with regeneration, with increase in pressure ratio will  (a) increase  (b) decrease  (c) remain unchanged  (d) increase/decrease depending on ap-plication  (e) unpredictable. “

Last Answer : Answer : b

Description : A certain gas, with cp = 0.529Btu/ lb. °Rand R = 96.2ft.lb/lb. °R, expands from 5 cu ft and 80°F to 15 cu ft while the pressure remains constant at 15.5psia. Compute for T2.  a.1520°R  b. 1620°R  c. 1720°R  d. 1820°R formula: T2= T1V2/V1

Last Answer : 1620°R

Description : A certain gas with cp = 0.529Btu/lb°R and R = 96.2ft/lbºR expands from 5 ft and 80ºF to 15 ft while the pressure remains constant at 15.5 psia.  a. T2=1.620ºR, ∫H = 122.83 Btu  b. T2 = 2°R, ∫H = 122.83 Btu  c. ... , ∫H = 122.83 Btu  d. T2 = 1°R, ∫H = 122.83 Btu T2= V2(t2)/V1 and ∫H = mcp (T2-T1)

Last Answer : T2=1.620ºR, ∫H = 122.83 Btu

Description : A certain gas, with cp = 0.529Btu/lb.°R and R = 96.2 ft.lb/lb.°R, expands from 5 cu ft and 80°F to 15 cu ft while the pressure remains constant at 15.5 psia. Compute for T2. (Formula: T2= T1V2/V1)  a. 460°R  b. 270°R  c. 1620 °R  d. None of the above

Last Answer : 1620 °R

Description : Find the change in internal energy of 5 lb. of oxygen gas when the temperature changes from 100 ˚F to 120 ˚F. CV = 0.157 BTU/lbm-˚R  A.14.7 BTU  B.15.7 BTU  C. 16.8 BTU  D. 15.9 BTU Formula: U= mcv T

Last Answer : 15.7 BTU

Description : A gas is enclosed in a cylinder with a weighted piston as the top boundary. The gas is heated and expands from a volume of 0.04 m3 to 0.10 m3 at a constant pressure of 200 kPa. Find the work done on the system.  a. 5 kJ  b. 15 kJ  c. 10 kJ  d. 12 kJ

Last Answer : 12 kJ

Description : _________ is the average distance a molecule moves before colliding with another molecule.  a. mean free path  b. path allowance  c. compacting factor  d. molecular space

Last Answer : mean free path

Description : For a certain gas R = 320 J/kg.K and cv= 0.84kJ/kg.K. Find k?  a. 1.36  b. 1.37  c. 1.38  d. 1.39 formula: k= R / cv+1

Last Answer : 1.38

Description : Gas is enclosed in a cylinder with a weighted piston as the stop boundary. The gas is heated and expands from a volume of 0.04 m^3 to 0.10 m^3 at a constant pressure of 200kPa.Calculate the work done by the system.  A. 8 kJ  B. 10 kJ  C.12 kJ  D.14 kJ Formula: W = p(V2-V1)

Last Answer : 12 kJ

Description : Helium ( R= 0.4698 BTU/lbm-˚R ) is compressed isothermally from 14.7 psia and 68 ˚F. The compression ratio is 1:4. Calculate the work done by the gas.  A. –1454 BTU/lbm  B. -364 BTU/lbm  C.-187BTU/lbm  D.46.7 BTU/lbm Formula: W = RT ln (V2/V1)

Last Answer : -364 BTU/lbm

Description : The value of gas constant (R) in S. I. units is  A. 0.287 J/kgK  B. 2.87 J/kgK  C. 28.7 J/kgK  D. 287 J/kgK

Last Answer : Answer: D

Description : Molecular volume of any perfect gas at 600 x 103 N/m2 and 27°C will be  (a) 4.17m3/kgmol  (b) 400 m3/kg mol  (c) 0.15 m3/kg mol  (d) 41.7 m3/kg mol  (e) 417m3/kgmol.

Last Answer : Answer : a

Description : The pressure gauge on a 2000 m³ tank of oxygen gas reads 600 kPa. How much volumes will the oxygen occupied at pressure of the outside air 100 kPa?  a) 14026.5 m³  b) 15026.5 m³  c) 13026.5 m³  d) 16026.5 m³ Formula: P1V1/T1 =P2V2/T2

Last Answer : 14026.5 m³

Description : There are 1.36 kg of gas, for which R = 377 J/kg.k and k = 1.25, that undergo a nonflow constant volume process from p1 = 551.6 kPa and t1 = 60°C to p2 = 1655 kPa. During the process the gas is internally stirred and ... (Formula: T2= T1p2/ p1)  a. 999 K  b. 888 K  c. 456 K  d. One of the above

Last Answer : 999 K