Coefficient of velocity is defined as the ratio of
(A) Actual velocity of jet at vena contracta to the theoretical velocity
(B) Area of jet at vena contracta to the area of orifice
(C) Actual discharge through an orifice to the theoretical discharge
(D) None of the above

1 Answer

Answer :

Answer: Option A

Related questions

Description : Coefficient of resistance is the ratio of (A) Actual velocity of jet at vena-contracta to the theoretical velocity (B) Area of jet at vena-contracta to the area of orifice (C) Loss ... available at the exit of the orifice (D) Actual discharge through an orifice to the theoretical discharge

Last Answer : Answer: Option C

Description : Coefficient of contraction is the ratio of (A) Actual velocity of jet at vena contracta to the theoretical velocity (B) Loss of head in the orifice to the head of water available at the exit of the ... available at the exit of the orifice (D) Area of jet at vena-contracta to the area of orifice

Last Answer : Answer: Option D

Description : Cd , Cc and Cv are related (for flow through an orifice) as (where, Cd = discharge co-efficient, Cc = co-efficient of contraction = (area of jet at vena￾contracta/area of opening), Cv = co-efficient of velocity = (actual velocity ... A) Cd = Cc /Cv (B) Cd = Cc .Cv (C) Cd = Cv / Cc (D) None of these

Last Answer : (B) Cd = Cc .Cv

Description : A jet of water discharging from a 40 mm diameter orifice has a diameter of 32 mm at its vena contracta. The coefficient of contraction is (A) 0.46 (B) 0.64 (C) 0.78 (D) 0.87

Last Answer : Answer: Option B

Description : The theoretical velocity of jet at vena contracta is (where H = Head of water at vena contracta) (A) 2gH (B) H × g) (C) 2g × H (D) 2gh)

Last Answer : Answer: Option D

Description : The actual velocity at vena-contracta for flow through an orifice from a reservoir is given by (A) Cv . √(2gH) (B) Cc . √(2gH) (C) Cd . √(2gH) (D) Cv . Va

Last Answer : (A) Cv . √(2gH)

Description : 20. The coefficient of discharge is the ratio of theoretical discharge to the actual discharge through an orifice. A) True B) False

Last Answer : B

Description : What is the co-efficient of contraction, if a fluid jet discharging from a 50 mm diameter orifice has a 40 mm diameter at its vena-contracta? (A) 0.64 (B) 1.65 (C) 0.32 (D) 0.94

Last Answer : (A) 0.64

Description : Co-efficient of discharge (Cd ) is defined as actual discharge/theoretical discharge and is equal to Cc . Cv ; where Cc = Co-efficient of contraction and Cv = co-efficient of velocity. Cd of an orifice is usually about (A) 0.42 (B) 0.62 (C) 0.82 (D) 0.98

Last Answer : (B) 0.62

Description : Co-efficient of discharge (Cd ) is defined as actual discharge/theoretical discharge and is equal to Cc . Cv ; where Cc = Co-efficient of contraction and Cv = co-efficient of velocity. Cd of an orifice is usually about (A) 0.42 (B) 0.62 (C) 0.82 (D) 0.98

Last Answer : (B) 0.62

Description : Vena-contracta formed during flow of a liquid through an orificemeter has (A) Minimum liquid cross-section (B) More diameter compared to orifice diameter (C) Minimum velocity of fluid stream (D) None of these

Last Answer : (A) Minimum liquid cross-section

Description : Location of vena-contracta in an orificemeter does not depend upon the (A) Type of orifice (B) Density, viscosity & compressibility of the fluid (C) Ratio of pipe diameter to orifice diameter (D) Pipe roughness

Last Answer : (A) Type of orifice

Description : In a short cylindrical external mouthpiece, the vena contracta occurs at a distance __________ the diameter of the orifice from the outlet of orifice. (A) Equal to (B) One-fourth (C) One-third (D) One-half

Last Answer : Answer: Option B

Description : 10. If the value of coefficient of discharge increases, the discharge through the orifice decreases. A) True B) False

Last Answer : B

Description : The discharge through a large rectangular orifice is given by (where H1 = Height of the liquid above the top of the orifice, H2 = Height of the liquid above the bottom of the orifice, b = Breadth of the orifice, and Cd = Coefficient of ... H1 3/2) (D) Q = (2/3) Cd b (2g) (H2 2 - H1 2 )

Last Answer : Answer: Option C

Description : 01. In a convergent mouthpiece, the absolute pressure head at vena contracta is the same as that of the atmosphere. A) True B) False

Last Answer : A

Description : 10. In an external or internal mouthpiece, the absolute pressure head at vena contracta is zero when atmospheric pressure head is 10.3 m of water. A) Correct B) Incorrect

Last Answer : A

Description : In an external mouthpiece, the absolute pressure head at vena contracta is __________ the atmospheric pressure head by an amount equal to 0.89 times the height of the liquid, above the vena contracta. (A) Less than (B) More than (C) Equal to (D) None of these

Last Answer : Answer: Option A

Description : In an internal mouthpiece, the absolute pressure head at vena contracta is __________ the atmospheric pressure head by an amount equal to height of the liquid above the vena contracta. (A) Less than (B) More than (C) Equal to (D) None of these

Last Answer : Answer: Option A

Description : Consider the following devices : 1. Orifice 2. Borda’s mouthpiece running free 3. Bell mouthed orifice 4. External mouthpiece What is the correct sequence of these devices by decreasing magnitude of coefficient of discharge? a) 2, 3, 1 and 4 b) 4, 3, 1 and 2 c) 4, 1, 3 and 2 d) 2, 1, 3 and 4

Last Answer : b) 4, 3, 1 and 2

Description : Vena-contracta pressure tapping is at a distance __________ from the position of an orificemeter fitted in a pipe of internal diameter 'd' (A) d (B) 0.5 d (C) 2d (D) 4d

Last Answer : (B) 0.5 d

Description : The value of coefficient of velocity for a sharp edged orifice __________ with the head of water. (A) Decreases (B) Increases (C) Remain same (D) None of these

Last Answer : Answer: Option B

Description : The coefficient of discharge for an external mouthpiece depends upon (A) Velocity of liquid (B) Pressure of liquid (C) Area of mouthpiece (D) Length of mouthpiece

Last Answer : Answer: Option D

Description : The relative coefficient of performance is (a) actual COP/theoretical COP (b) theoretical COP/actual COP (c) actual COP x theoretical COP (d) 1-actual COP x theoretical COP

Last Answer : Ans: a

Description : The value of coefficient of discharge is __________ the value of coefficient of velocity. (A) Less than (B) Same as (C) More than (D) None of these

Last Answer : Answer: Option A

Description : Coefficient of discharge Cd is equal to (where Cc = Coefficient of contraction, Cv = Coefficient of velocity, and Cr = Coefficient of resistance) (A) Cc × Cv (B) Cc × Cr (C) Cv × Cr (D) Cc /Cr

Last Answer : Answer: Option A

Description : Extended heat transfer surface like fins are used to increase the heat transfer rate. Fin efficiency is defined as the ratio of heat transferred across the fin surface to the theoretical heat transfer ... (C) Temperature of the fin end (D) Constant temperature equal to that of the base

Last Answer : (D) Constant temperature equal to that of the base

Description : The discharge co-efficient for an orifice meter does not depend upon the (A) Pipe length (B) Ratio of pipe diameter to orifice diameter (C) Type of orifice & the Reynolds number (D) Pipe diameter

Last Answer : (A) Pipe length

Description : The co-efficient of discharge of an orificemeter is a function of (A) Reynolds number at the orifice (B) Ratio of orifice dia to pipe dia (C) Both (A) and (B) (D) None of the above parameters, and has a constant value of 0.61

Last Answer : (C) Both (A) and (B)

Description : Atomization of spray fluid can achieved by : A. discharging the liquid through an orifice under pressure B. by breaking up the jet of liquid by a blast of _____ C. both A & B D. none

Last Answer : C. both A & B

Description : The coefficient of viscosity may be determined by (A) Capillary tube method (B) Orifice type viscometer (C) Rotating cylinder method (D) All of these

Last Answer : Answer: Option D

Description : A point, in a compressible flow where the velocity of fluid is zero, is called (A) Critical point (B) Vena contracta C) Stagnation point (D) None of these

Last Answer : Answer: Option C

Description : 14. The velocity of liquid flowing through an orifice varies with the available head of the liquid. A) Agree B) Disagree

Last Answer : A

Description : Derive equation for discharge through orifice meter with the help of neat sketch.

Last Answer : Orifice Meter or orifice Plate: It is a device used for measuring the rate of flow of a fluid through a pipe. It is Cheaper device as compared to venturimeter. It also works on the same ... a distance of about half the diameter of the orifice on the downstream side from the orifice plate. 

Description : Flexibility of an outlet may be defined as the ratio of the rate of change of : a) Outlet discharge to the rate of change of water level of the parent channel b) Outlet discharge to the ... of the change of the outlet discharge d) Parent channel water level to the rate of the outlet discharge

Last Answer : b) Outlet discharge to the rate of change of the discharge of the parent channel

Description : Co-efficient of velocity is __________ the coefficient of discharge. (A) Less than (B) More than (C) Equal to (D) Not related to

Last Answer : (B) More than

Description : Actual lift of a pump is always less than the theoretical lift and is limited by the (A) Specific gravity & temperature of the liquid (B) Leakage & pressure decreasing at higher elevations (C) Frictional resistance through pipes, fittings & passages (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : An orifice is said to be large, if (A) The size of orifice is large (B) The velocity of flow is large (C) The available head of liquid is more than 5 times the height of orifice (D) The available head of liquid is less than 5 times the height of orifice

Last Answer : Answer: Option D

Description : What is the value of co-efficient of discharge for square edged circular orifice (for β = 0.3 to 0.5)? (A) 0.61 - 0.63 (B) 0.5 - 0.75 (C) 0.75 - 0.90 (D) 0.35 - 0.55

Last Answer : (A) 0.61 - 0.63

Description : For a non-spherical particle, the sphericity (A) Is defined as the ratio of surface area of a sphere having the same volume as the particle to the actual surface area of the particle (B) Has ... of volume of a sphere having the same surface area as the particle to the actual volume of the particle

Last Answer : (A) Is defined as the ratio of surface area of a sphere having the same volume as the particle to the actual surface area of the particle

Description : The net positive suction head (NPSH) of a centrifugal pump is defined as the sum of the velocity head and the pressure head at the (A) Discharge (B) Suction (C) Suction minus vapor ... of the liquid at suction temperature (D) Discharge minus vapor pressure of the liquid at the discharge temperature

Last Answer : (C) Suction minus vapor pressure of the liquid at suction temperature

Description : The net positive suction head (NPSH) of a centrifugal pump is defined as the sum of the velocity head and the pressure head at the (A) Discharge (B) Suction (C) Suction minus vapor ... of the liquid at suction temperature (D) Discharge minus vapor pressure of the liquid at the discharge temperature

Last Answer : (C) Suction minus vapor pressure of the liquid at suction temperature

Description : The ratio of design discharge to the surface area of a sedimentation tank is called A. Surface loading B. Overflow rate C. Overflow velocity D. All of these

Last Answer : ANS: D

Description : In actual machines (A) Mechanical advantage is greater than velocity ratio (B) Mechanical advantage is equal to velocity ratio (C) Mechanical advantage is less than velocity ratio (D) Mechanical advantage is unity

Last Answer : (C) Mechanical advantage is less than velocity ratio

Description : S1 and S2 are the draw downs in an observation well at times t1 and t2 after pumping. For  discharge Q and coefficient of transmissibility T, the relationship, is  (A) S2 - S1 = (2.3Q/ ) log10 (t2/t1)  (B) S2 - S1 ... - S1 = (2.3Q/4 ) loge (t2/t1)  (D) S2 - S1 = (2.3Q/4 ) loge (t1/t2

Last Answer : (B) S2 - S1 = (2.3Q/4 ) log10 (t2/t1) 

Description : Coefficient of discharge of an ogee spillway (A) Depends on depth of approach and upstream slope (B) Depends on downstream apron interference and downstream submergence (C) Remains constant (D) Both (A) and (B

Last Answer : Answer: Option D

Description : 09. According to Bazin, the coefficient of discharge varies with the height of water over the sill of a weir. A) Correct B) Incorrect

Last Answer : A

Description : The coefficient of discharge in case of internal mouthpiece is __________ that of external mouthpiece. (A) Less than (B) More than (C) Equal to (D) None of these

Last Answer : Answer: Option A

Description : The coefficient of discharge for an external mouthpiece is (A) 0.375 (B) 0.5 (C) 0.707 (D) 0.855

Last Answer : Answer: Option D