The change in __________ is equal to the reversible work for compression in steady state flow process under isothermal condition. (A) Internal energy
(B) Enthalpy
(C) Gibbs free energy
(D) Helmholtz free energy

1 Answer

Answer :

(C) Gibbs free energy

Related questions

Description : Pick out the correct statement. (A) The available energy in an isolated system for all irreversible (real) processes decreases (B) The efficiency of a Carnot engine increases, if the sink temperature is decreased ... condition is the change in Helmholtz free energy (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : In any spontaneous process, the __________ free energy decreases. (A) Helmholtz (B) Gibbs (C) Both ‘a’ & ‘b’ (D) Neither 'a' nor 'b'

Last Answer : (C) Both ‘a’ & ‘b’

Description : Specific __________ does not change during a phase change (e.g. sublimation, melting, vaporisation etc.). (A) Entropy (B) Internal energy (C) Enthalpy (D) Gibbs free energy

Last Answer : (D) Gibbs free energy

Description : Specific __________ does not change during phase change at constant temperature and pressure. (A) Entropy (B) Gibbs energy (C) Internal energy (D) Enthalpy

Last Answer : (B) Gibbs energy

Description : Which of the following non-flow reversible compression processes require maximum work? (A) Adiabatic process (B) Isothermal process (C) Isobaric process (D) All require same work

Last Answer : (A) Adiabatic process

Description : Throttling process is a/an __________ process. (A) Reversible and isothermal (B) Irreversible and constant enthalpy (C) Reversible and constant entropy (D) Reversible and constant enthalpy

Last Answer : (B) Irreversible and constant enthalpy

Description : The index of compression n tends to reach ratio of specific heats y when  (a) flow is uniform and steady  (b) process is isentropic  (c) process is isothermal  (d) process ... specific heat does not change with temperature  (e) process is isentropic and specific heat changes with temperature.

Last Answer : Answer : d

Description : Gibbs free energy (G) is represented by, G = H - TS, whereas Helmholtz free energy, (A) is given by, A = E - TS. Which of the following is the Gibbs Helmholtz equation? (A) [∂(G/T)/∂T] = - (H/T2) (B) [∂(A/T)/∂T]V = - E/T2 (C) Both (A) and (B) (D) Neither (A) nor (B)

Last Answer : (C) Both (A) and (B)

Description : “The fugacity of a gas in a mixture is equal to the product of its mole fraction and its fugacity in the pure state at the total pressure of the mixture". This is (A) The statement as per Gibbs-Helmholtz (B) Called Lewis-Randall rule (C) Henry's law (D) None of these

Last Answer : (B) Called Lewis-Randall rule

Description : Change in enthalpy in a closed system is equal to heat transferred if the reversible process takes place at constant  (a) pressure  (b) temperature  (c) volume  (d) internal energy  (e) entropy.

Last Answer : Answer : a

Description : The four properties of a system viz. P, V, T, S are related by __________ equation. (A) Gibbs-Duhem (B) Gibbs-Helmholtz (C) Maxwell's (D) None of these

Last Answer : (C) Maxwell's

Description : The relation connecting the fugacities of various components in a solution with one another and to composition at constant temperature and pressure is called the __________ equation. (A) Gibbs-Duhem (B) Van Laar (C) Gibbs-Helmholtz (D) Margules

Last Answer : (A) Gibbs-Duhem

Description : When a gas is expanded from high pressure region to low pressure region; temperature change occurs". This phenomenon is related to the (A) Gibbs-Duhem equation (B) Gibbs-Helmholtz equation (C) Third law of thermodynamics (D) Joule-Thomson effect

Last Answer : (D) Joule-Thomson effect

Description : _________ is a thermodynamic potential that measures the “useful” or process-initiating work obtainable from an isothermal, isobaric thermodynamic system.  a. Du-Pont Potential  b. Gibbs free energy  c. Rabz-Eccles Energy  d. Claussius Energy

Last Answer : Gibbs free energy

Description : In an isothermal process,  A. there is no change in temperature  B. there is no change in enthalpy  C. there is no change in internal energy  D. all of these

Last Answer : Answer: D

Description : Pick out the correct statement. (A) Like internal energy and enthalpy, the absolute value of standard entropy for elementary substances is zero (B) Melting of ice involves increase in enthalpy and ... of an ideal gas depends only on its pressure (D) Maximum work is done under reversible conditions

Last Answer : (D) Maximum work is done under reversible conditions

Description : Steady state one dimensional heat flow by conduction as given by Fourier's low does not assume that (A) There is no internal heat generation (B) Boundary surfaces are isothermal (C) Material is anisotropic (D) Constant temperature gradient exists

Last Answer : (C) Material is anisotropic

Description : When a gas in a vessel expands, its internal energy decreases. The process involved is (A) Reversible (B) Irreversible (C) Isothermal (D) Adiabatic

Last Answer : (A) Reversible

Description : Which of the following occurs in a reversible polytrophic process?  a. Enthalpy remains constant  b. Internal energy does not change  c. Some heat transfer occurs  d. Entropy remains constant

Last Answer : Some heat transfer occurs

Description : Gibbs-Helmholtz equation is (A) ∆F = ∆H + T [∂(∆F)/∂T]P (B) ΔF = ΔH - TΔT (C) d(E - TS) T, V < 0 (D) dP/dT = ∆Hvap/T.∆Vvap

Last Answer : (A) ∆F = ∆H + T [∂(∆F)/∂T]P

Description : The expression, ∆G = nRT. ln(P2/P1), gives the free energy change (A) With pressure changes at constant temperature (B) Under reversible isothermal volume change (C) During heating of an ideal gas (D) During cooling of an ideal gas

Last Answer : (A) With pressure changes at constant temperature

Description : When the expansion of compression of gas takes place without transfer of heat to or from the gas the process is called  a. reversible  b. adiabatic  c. polytropic  d. isothermal

Last Answer : adiabatic

Description : Which of the following processes cannot be made reversible even under ideal condition of operation? (A) Free expansion of a gas (B) Compression of air in a compressor (C) Expansion of steam in a turbine (D) All (A), (B) & (C)

Last Answer : (A) Free expansion of a gas

Description : For an isothermal reversible compression of an ideal gas (A) Only ΔE = 0 (B) Only ΔH =0 (C) ΔE = ΔH = 0 (D) dQ = dE

Last Answer : C) ΔE = ΔH = 0

Description : If heat be exchanged in a reversible manner, which of the following property of the working substance will change accordingly  (a) temperature  (b) enthalpy  (c) internal energy  (d) entropy  (e) all of the above.

Last Answer : Answer : d

Description : The expression for the work done for a reversible polytropic process can be used to obtain the expression for work done for all processes, except reversible __________ process. (A) Isobaric (B) Isothermal (C) Adiabatic (D) None of these

Last Answer : (B) Isothermal

Description : If a reaction has an enthalpy of -54.32 kJ/mol and an entropy of -354.2 J/(K*mol), what is the Gibbs free Energy at 54.3(degrees c)?

Last Answer : DeltaG = DeltaH - TDeltaS dG = -54.32 kJ/mol - (54'32+273)K(-354.2J/molK) NB Thevtemperature is quoted in Kelvin(K) and the Entropy must be converted to kJ by dividing by '1000'/ Hence dG = ... 115.94 kJ/mol dG = (+)61.61 kJ/mol Since dG is positive, the reaction is NOT thermodynamically feasible.

Description : In polytropic process (PV n = constant), if n = 1; it means a/an __________ process. (A) Adiabatic (B) Reversible (C) Isothermal (D) None of these

Last Answer : (C) Isothermal

Description : In the equation, PVn = constant, if the value of n = ± ∞, then it represents a reversible __________ process. (A) Adiabatic (B) Isometric (C) Isentropic (D) Isothermal

Last Answer : (B) Isometric

Description : In the equation PVn = constant, if the value of n = y = Cp/Cv, then it represents a reversible __________ process. (A) Isothermal (B) Adiabatic (C) Isentropic (D) Polytropic

Last Answer : (C) Isentropic

Description : In the equation, PVn = constant, if the value of n = 1, then it represents a reversible __________ process. (A) Isothermal (B) Isobaric (C) Polytropic (D) Adiabatic

Last Answer : (A) Isothermal

Description : In the equation, PVn = Constant, if the value of n = 0, then it represents a reversible __________ process. (A) Isobaric (B) Isothermal (C) Isentropic (D) Isometric

Last Answer : (A) Isobaric

Description : Entropy of a substance remains constant during a/an __________ change. (A) Reversible isothermal (B) Irreversible isothermal (C) Reversible adiabatic (D) None of these

Last Answer : (C) Reversible adiabatic

Description : _________ does not change during phase transformation processes like sublimation, melting & vaporisation. (A) Entropy (B) Gibbs free energy (C) Internal energy (D) All (A), (B) & (C)

Last Answer : (B) Gibbs free energy

Description : The adiabatic throttling process of a perfect gas is one of constant enthalpy (A) In which there is a temperature drop (B) Which is exemplified by a non-steady flow expansion (C) Which can be performed in a pipe with a constriction (D) In which there is an increase in temperature

Last Answer : (C) Which can be performed in a pipe with a constriction

Description : What is polytropic process ? Under what conditions it approaches isobaric, isothermal, and isometric process ? In which reversible process no work is done ?

Last Answer : A polytropic process is one that follows the equation pun = constant (index n may have values from – oc to + oo. This process approaches isobaric when n = 0, isothermal when n = 1, and isometric when n = . No work is done in isometric process.

Description : . The entropy change in a reversible isothermal process, when an ideal gas expands to four times its initial volume is (A) R loge 4 (B) R log10 4 (C) Cv log10 4 (D) Cv loge 4

Last Answer : (A) R loge 4

Description : . The entropy change in a reversible isothermal process, when an ideal gas expands to four times its initial volume is (A) R loge 4 (B) R log10 4 (C) Cv log10 4 (D) Cv loge 4

Last Answer : (A) R loge 4

Description : In case of steady flow compression polytropic process (PVn = constant), the work done on air is the lowest, when (A) n = y = 1.4 (B) n = 0 (C) n = 1 (D) n = 1.66

Last Answer : (C) n = 1

Description : An isothermal aqueous phase reversible reaction, P ⇌ R, is to be carried out in a mixed flow reactor. The reaction rate in k.mole/m3 .h is given by, r = 0.5CP - 0.125CR. A stream containing only P enters the reactor. The ... (in hours) for 40% conversion of P is (A) 0.80 (B) 1.33 (C) 1.60 (D) 2.67

Last Answer : (C) 1.60

Description : Generation of heat by friction is an example of a/an __________ change. (A) Isothermal (B) Irreversible (C) Adiabatic (D) Reversible

Last Answer : (B) Irreversible

Description : For a constant pressure reversible process, the enthalpy change (ΔH) of the system is (A) Cv.dT (B) Cp.dT (C) ∫ Cp.dT (D) ∫ Cv.dT

Last Answer : (C) ∫ Cp.dT

Description : In case of an __________ process, the temperature of the system increases. (A) Isothermal compression (B) Isothermal expansion (C) Adiabatic expansion (D) Adiabatic compression

Last Answer : (D) Adiabatic compression

Description : Fanning friction factor equation applies to the __________ fluid flow. (A) Non-isothermal condition of (B) Compressible (C) Both (A) and (B) (D) Neither (A) nor (B)

Last Answer : (D) Neither (A) nor (B)

Description : Pick out the correct statement. (A) Entropy and enthalpy are path functions (B) In a closed system, the energy can be exchanged with the surrounding, while matter cannot be exchanged (C) All the natural processes are reversible in nature (D) Work is a state function

Last Answer : (C) All the natural processes are reversible in nature

Description : The value of n = 1 in the polytropic process indicates it to be  (a) reversible process  (b) isothermal process  (c) adiabatic process  (d) irreversible process  (e) free expansion process.

Last Answer : Answer : b

Description : Change in internal energy in a closed system is equal to heat transferred if the reversible process takes place at constant  (a) pressure  (b) temperature  (c) volume  (d) internal energy  (e) entropy.

Last Answer : Answer : c

Description : The isothermal and isentropic processes are reversible non-flow processes.  A. Agree  B. Disagree

Last Answer : Answer: A

Description : PVy = constant, holds good for an isentropic process, which is (A) Reversible and isothermal (B) Isothermal and irreversible (C) Reversible and adiabatic (D) Adiabatic and irreversible

Last Answer : C) Reversible and adiabatic