If a reaction has an enthalpy of -54.32 kJ/mol and an entropy of -354.2 J/(K*mol), what is the Gibbs free Energy at 54.3(degrees c)?

1 Answer

Answer :

DeltaG = DeltaH - TDeltaS dG = -54.32 kJ/mol - (54'32+273)K(-354.2J/molK) NB Thevtemperature is quoted in Kelvin(K) and the Entropy must be converted to kJ by dividing by '1000'/ Hence dG = - 54.32kJ/mol - (327.32K)(-0.3542 kJ/molK) NB The 'K' cancels out. Then maker the multiplication dG = -54/32 kJ/mol - - 115.94 kJ/mol Note the double minus; it becomes plus(+). Hence dG = -54.32kj/mol + 115.94 kJ/mol dG = (+)61.61 kJ/mol Since dG is positive, the reaction is NOT thermodynamically feasible.

Related questions

Description : The enthalpy change for a given reaction at `298 K` is `-x cal mol^(-1)`. If the reaction occurs spontaneously at `298 K`, the entropy change at that

Last Answer : The enthalpy change for a given reaction at `298 K` is `-x cal mol^(-1)`. If the reaction occurs ... (-1)` C. Cannot be negative D. Cannot be positive

Description : For the given reaction , `A(g) rarr 2B(g) , Delta_(r)H= 30 kJ//"mole" Delta_(r)S = 150 J//mol` at `300 K` If `C_(P,A) = 20 J//K mol` and `C_(P,B) = 20

Last Answer : For the given reaction , `A(g) rarr 2B(g) , Delta_(r)H= 30 kJ//"mole" Delta_(r)S = 150 J//mol` at ... G` is negative D. At `T = 200, Delta G` is zero

Description : If the enthalpy of vaporisation of water is `186.5 J mol^(-1)`, then entropy of its vaporisation will be

Last Answer : If the enthalpy of vaporisation of water is `186.5 J mol^(-1)`, then entropy of its vaporisation will be A. `0.5 ... (-1)` D. `2.0KJK^(-1)"mole"^(-1)`

Description : Specific __________ does not change during a phase change (e.g. sublimation, melting, vaporisation etc.). (A) Entropy (B) Internal energy (C) Enthalpy (D) Gibbs free energy

Last Answer : (D) Gibbs free energy

Description : The enthalpy of formation of ammonia is `-46.0 KJ mol^(-1)` . The enthalpy change for the reaction `2NH_(3)(g)rarr N_(2)(g)+3H_(2)(g)` is :

Last Answer : The enthalpy of formation of ammonia is `-46.0 KJ mol^(-1)` . The enthalpy change for the reaction `2NH_(3)(g) ... mol^(-1)` D. `-92.0 KJ mol^(-1)`

Description : The value of enthalpy change `(DeltaH)` for the reaction `C_(2)H_(5)OH (l)+3O_(2) (g) rarr 2CO_(2) (g) +3H_(2)O (l)` at `27^(@)C` is `-1366.5 kJ mol^(

Last Answer : The value of enthalpy change `(DeltaH)` for the reaction `C_(2)H_(5)OH (l)+3O_(2) (g) rarr 2CO_(2) (g) + ... 1369. kJ` C. `-1364.0 kJ` D. `-1361.5 kJ`

Description : The enthalpy of formation of `CO(g), CO_(2)(g),N_(2)O(g)` and `N_(2)O_(4)(g)` is `-110,-393,+81` and 10 kJ / mol respectively. For the reaction `N_(2)

Last Answer : The enthalpy of formation of `CO(g), CO_(2)(g),N_(2)O(g)` and `N_(2)O_(4)(g)` is `-110,-393,+81` and 10 ... is A. `-212` B. `+212` C. `+778` D. `-778`

Description : The Gibbs free energy change of a reaction at `27^(@)C` is -26 Kcal. and its entropy change is -60 Cals/K. `Delta H` for the reaction is :-

Last Answer : The Gibbs free energy change of a reaction at `27^(@)C` is -26 Kcal. and its entropy change is -60 Cals/K. ... Cals. C. 34 K. Cals. D. `-24` K. Cals.

Description : Specific __________ does not change during phase change at constant temperature and pressure. (A) Entropy (B) Gibbs energy (C) Internal energy (D) Enthalpy

Last Answer : (B) Gibbs energy

Description : The enthalpy and entropy change for the reaction, `Br_(2)(l)+Cl_(2)(g)rarr2BrCl(g)` are `30KJmol^(-1)` and `105JK^(-1)mol^(-1)` respectively. The temp

Last Answer : The enthalpy and entropy change for the reaction, `Br_(2)(l)+Cl_(2)(g)rarr2BrCl(g)` are `30KJmol^(-1)` and ` ... 285.7 K B. 273 K C. 450 K D. 300 K

Description : Calculate the enthalpy of vaporisation per mole for ethanol. Given `DeltaS = 109.8 J K^(-1) mol^(-1)` and boiling point of ethanol is `78.5^(@)`.

Last Answer : Calculate the enthalpy of vaporisation per mole for ethanol. Given `DeltaS = 109.8 J K^(-1) mol^(-1)` ... KJ mol^(-1)` D. Some more data is required

Description : Given standard enthalpy of formation of `CO(-110 "KJ mol"^(-1))` and `CO_(2)(-394 "KJ mol"^(-1))`. The heat of combustion when one mole of graphite bu

Last Answer : Given standard enthalpy of formation of `CO(-110 "KJ mol"^(-1))` and `CO_(2)(-394 "KJ mol"^(-1))`. The heat ... B. `-284` KJ C. `-394` KJ D. `-504` KJ

Description : Ionization enthalpy of Li is 520 kJ mol^(-1) while that of F is 1681 kJ mol^(-1) . Explain.

Last Answer : Ionization enthalpy of Li is 520 kJ mol-1 while that of F is 1681 kJ mol-1. Explain.

Description : If the enthaply change for the transition of liquid water to steam is 30 KJ `"mol"^(-1)` at `27^(@)` C . The entropy change for the process would be

Last Answer : If the enthaply change for the transition of liquid water to steam is 30 KJ `"mol"^(-1)` at `27^(@)` C . The ... K^(-1)` D. `100 J mol^(-1)K^(-1)`

Description : A perfect gas has a value of R= 319.2 J/ kf.K and k= 1.26. If 120 kJ are added to 2.27 kf\g of this gas at constant pressure when the initial temp is 32.2°C? Find T2.  a. 339.4 K  b. 449.4 K  c. 559.4K  d. 669.4K formula: cp = kR/ k-1 Q= mcp(T2-T1)

Last Answer : 339.4 K

Description : The enthalpy of a reaction at 273 K. is -3.57 KJ. What will be the enthalpy of reaction at 373 K if `DeltaC_(p)` = zero :-

Last Answer : The enthalpy of a reaction at 273 K. is -3.57 KJ. What will be the enthalpy of reaction at 373 K if `DeltaC_ ... C. `-3.57xx(373)/(273)` D. `-375`

Description : The enthalpy change `(Delta H)` for the reaction `N_(2) (g)+3H_(2)(g) rarr 2NH_(3)(g)` is `-92.38 kJ` at `298 K`. What is `Delta U` at `298 K`?

Last Answer : The enthalpy change `(Delta H)` for the reaction `N_(2) (g)+3H_(2)(g) rarr 2NH_(3)(g)` is `-92.38 kJ` at ` ... -87.42 kJ` C. `-97.34 kJ` D. `-89.9 kJ`

Description : In which of the following reactions, standard reaction entropy change (S°) is positive and standard Gibb's energy change (G°) decreases sharply with increasing temperature? (1) 2 2 1 1 1 C graphite O (g) CO (g) 2 2 2   (2) 2 1 C ... CO(g) O (g) CO (g) 2   (4) 2 1 Mg(s) O (g) MgO(s) 2  

Last Answer : C graphite O (g) CO(g)

Description : Steam is throttled to 0.1 MPa with 20 degrees of superheat. (a) What is the quality of throttled steam if its pressure is 0.75 MPa (b) What is the enthalpy of the process?  a) 97.6%,2713 kJ/kg  b) -97.6%, 2713 kJ/kg  c) 87.6%,3713 kJ/kg  d) -87.6%, 3713 kJ/kg

Last Answer : 97.6%,2713 kJ/kg

Description : Standard free energy (∆G°) of hydrolysis of creatine phosphate is (A) -–51.4 KJ/mol (B) –43.1 KJ/mol (C) –30.5 KJ/mol (D) –15.9 KJ/mol

Last Answer : Answer : B

Description : Standard free energy (∆G°) of hydrolysis of phosphoenolpyruvate is (A) –61.9 KJ/mol (B) –43.1 KJ/mol (C) –14.2 KJ/mol (D) –9.2 KJ/mol

Last Answer : Answer : A

Description : Standard free energy (∆G°) of hydrolysis of ADP to AMP + Pi is (A) –43.3 KJ/mol (B) –30.5 KJ/mol (C) –27.6 KJ/mol (D) –15.9 KJ/mol

Last Answer : Answer : C

Description : Standard free energy (∆G°) of hydrolysis of ATP to ADP + Pi is (A) –49.3 KJ/mol (B) –4.93 KJ/mol (C) –30.5 KJ/mol (D) –20.9 KJ/mol

Last Answer : Answer : C

Description : The change in __________ is equal to the reversible work for compression in steady state flow process under isothermal condition. (A) Internal energy (B) Enthalpy (C) Gibbs free energy (D) Helmholtz free energy

Last Answer : (C) Gibbs free energy

Description : Boiling of liquid is accompanied with increase in the (A) Vapor pressure (B) Specific Gibbs free energy (C) Specific entropy (D) All (A), (B) and (C)

Last Answer : (A) Vapor pressure

Description : (∂H/∂T)P is the mathematical expression for (A) CV (B) Entropy change (C) Gibbs free energy (D) None of these

Last Answer : (D) None of these

Description : _________ does not change during phase transformation processes like sublimation, melting & vaporisation. (A) Entropy (B) Gibbs free energy (C) Internal energy (D) All (A), (B) & (C)

Last Answer : (B) Gibbs free energy

Description : In any chemical reaction, a quantity that decrease to a minimum is: w) free energy x) entropy y) temperature z) enthalpy

Last Answer : ANSWER: W -- FREE ENERGY

Description : For the reaction `Ag_(2)O(s)rarr 2Ag(s)+1//2O_(2)(g)` the value of `Delta H=30.56 KJ mol^(_1)` and `Delta S = 66 JK^(-1)mol^(-1)`. The temperature at

Last Answer : For the reaction `Ag_(2)O(s)rarr 2Ag(s)+1//2O_(2)(g)` the value of `Delta H=30.56 KJ mol^(_1)` and `Delta ... :- A. 373 K B. 413 K C. 463 K D. 493 K

Description : The temperature at which the reaction : `Ag_(2)O(s)rarr 2Ag(s)+1//2O_(2)(g)` is at equilibrium is …….., Given `Delta H=30.5 KJ mol^(-1)` and `Delta S

Last Answer : The temperature at which the reaction : `Ag_(2)O(s)rarr 2Ag(s)+1//2O_(2)(g)` is at equilibrium is .., ... 362.12 K` C. `262.12 K` D. `562.12 K`

Description : At which temperature would a reaction with AH = -92 kJ/mol, AS = -0.199kJ/(mol·K) be spontaneous?

Last Answer : the answer is 400

Description : A solid metallic block weighing 5 kg has an initial temperature of 500°C. 40 kg of water initially at 25°C is contained in a perfectly insulated tank. The metallic block is brought into contact with water. Both of them come to equilibrium. ... .kg-1, K-1is (A) -1.87 (B) 0 (C) 1.26 (D) 3.91

Last Answer : (B) 0

Description : Steam undergoes isentropic expansion in a turbine from 5000 kPa and 400°C (entropy = 6.65 kJ/kg K) to 150 kPa) (entropy of saturated liquid = 1.4336 kJ/kg. K, entropy of saturated vapour = 7.2234 ... vapour with quality of 0.9 (C) Saturated vapour (D) Partially condensed vapour with quality of 0.1

Last Answer : (A) Superheated vapour

Description : The enthalpy changes at 298 K in successive breaking of `O-H` bonds of water, are `H_(2)O(g) rarr H(g)+OH(g),DeltaH=498kJ mol^(-1)` `OH(g) rarr H(g)+O

Last Answer : The enthalpy changes at 298 K in successive breaking of `O-H` bonds of water, are `H_(2)O(g) rarr H(g)+OH(g), ... KJ mol"^(-1)` D. `463 "KJ mol"^(-1)`

Description : The first law of thermodynamics is based on which of the following principles?  a. conservation of mass  b. the enthalpy-entropy relationship  c. action – reaction  d. conservation of energy

Last Answer : conservation of energy

Description : What is the energy absorbed during chemical reaction under constant volume conditions?  A. Entropy  B. Ion exchange  C. Enthalpy  D. Enthalpy of reaction

Last Answer : Enthalpy

Description : Standard entropy of `X_(2)` , `Y_(2)` and `XY_(3)` are `60, 40 ` and `50JK^(-1)mol^(-1)` , respectively. For the reaction, `(1)/(2)X_(2)+(3)/(2)Y_(2)r

Last Answer : Standard entropy of `X_(2)` , `Y_(2)` and `XY_(3)` are `60, 40 ` and `50JK^(-1)mol^(-1)` , respectively ... be: A. 500 K B. 750 K C. 1000 K D. 1250 K

Description : There are 1.36 kg of gas, for which R = 377 J/kg.k and k = 1.25, that undergo a nonflow constant volume process from p1 = 551.6 kPa and t1 = 60°C to p2 = 1655 kPa. During the process the gas is internally stirred and ... (Formula: T2= T1p2/ p1)  a. 999 K  b. 888 K  c. 456 K  d. One of the above

Last Answer : 999 K

Description : Molar gas constant has value A. 7 J mol-1 K-1 B. 8 J mol-1 K-1 C. 8.31 J mol-1 K-1 D. 5 J mol-1 K-1

Last Answer : 8.31 J mol-1 K-1

Description : Hot water (0.01 m3 /min) enters the tube side of a counter current shell and tube heat exchanger at 80°C and leaves at 50°C. Cold oil (0.05 m3 /min) of density 800 kg/m3 and specific heat of ... mean temperature difference in °C is approximately (A) 32 (B) 37 (C) 45 (D) 50

Last Answer : (A) 32

Description : The extensive properties are (A) Volume, mass and number of moles (B) Free energy, entropy and enthalpy (C) Both (A) and (B) (D) None of these

Last Answer : (C) Both (A) and (B)

Description : What is defined as the sum of the system’s internal energy and the product of its pressure and volume? a. Entropy. b. Enthalpy. c. Free energy. d. Potential energy.

Last Answer : b. Enthalpy.

Description : What American first proposed the free energy function G, which interrelates entropy and enthalpy?

Last Answer : ANSWER: J. WILLARD GIBBS 

Description : The correct values of ionization enthalpies(in KJ `"mol"^(-1)`) of Si, P, Cl, and S respectively are: a)`786, 1012, 999, 1256` b)`1012, 786, 999, 1256

Last Answer : The correct values of ionization enthalpies(in KJ `"mol"^(-1)`) of Si, P, Cl, and S respectively are: ... . `786,1012,1256,999` D. `786,999,1012,1256`

Description : An element has successive ionization enthalpies as 940 (first),2080,3090,4140,7030,7870,16000 and 19500 kJ `mol^(-1)`. To which group of the periodic

Last Answer : An element has successive ionization enthalpies as 940 (first),2080,3090,4140,7030,7870,16000 and 19500 kJ `mol^(- ... belong? A. 14 B. 15 C. 16 D. 17

Description : The heat of combustion of carbon and monoxide are -394 and -285 KJ `mol^(-1)` respectively. The heat of formation of CO in KJ `mol^(-1)` is :-

Last Answer : The heat of combustion of carbon and monoxide are -394 and -285 KJ `mol^(-1)` respectively. The heat of formation ... B. `-109` C. `+218` D. `-218`

Description : For `CaCO_(3)(s)rarr CaO(s)+CO_(2)(g)` at `977^(@)C, Delta H = 174` KJ/mol , then `Delta E` is :-

Last Answer : For `CaCO_(3)(s)rarr CaO(s)+CO_(2)(g)` at `977^(@)C, Delta H = 174` KJ/mol , then `Delta E` is :- A. 160 KJ B. 163.6 KJ C. 186.4 KJ D. 180 KJ

Description : `DeltaH_"vaporisation"` (KJ/mol) are given for the hydrides of halogens in the following graph. The hydride HF will correspond to

Last Answer : `DeltaH_"vaporisation"` (KJ/mol) are given for the hydrides of halogens in the following graph. The hydride HF will ... . (B)Q C. (C)R D. (D)S

Description : The value of `Delta_(0) " for " [Ti(H_(2)O)_(6)]^(3+)` is found to be 240 kJ `mol^(-1)` then predict the colour of the complex using the following tab

Last Answer : The value of `Delta_(0) " for " [Ti(H_(2)O)_(6)]^(3+)` is found to be 240 kJ `mol^(-1)` then ... -34)J-sec,N_(A)=6xx10^(23)c=3xx10^(8) m//sec)`

Description : Consider the following reactions at `1000^(@)C`. (A) `Zn_((s))+1/2 O_(2(g)) rarr ZnO_((s)), DeltaG^(@)=-360` kJ/mol (B) `C_("(gra)")+1/2 O_(2(g)) rarr

Last Answer : Consider the following reactions at `1000^(@)C`. (A) `Zn_((s))+1/2 O_(2(g)) rarr ZnO_((s)), DeltaG^( ... a) and (b) are true D. both (a) and (b) false