The equivalent length of a column fixed at one end and free at the other end, is
(A) 0.5 l
(B) 0.7 l
(C) 2 l
(D) 1.5 l

1 Answer

Answer :

(C) 2 l

Related questions

Description : The equivalent length of a column fixed at both ends, is  (A) 0.5 l (B) 0.7 l (C) l (D) 1.5 l

Last Answer : (A) 0.5 l

Description : The equivalent length of a column fixed at both ends, is (a) 0.5 l (b) 0.7 l (c) l (d) 1.5 l

Last Answer : (a) 0.5 l

Description : A column has its equivalent length equal to its length in case of a.one end fixed, other free b.both ends hinged c.one end hinged, other free d.107 dynes e.both end fixed

Last Answer : b. both ends hinged

Description : A column with maximum equivalent length has (a) both ends hinged (b) both ends fixed (c) one end fixed and the other end hinged (d) one end fixed and the other end free

Last Answer : (d) one end fixed and the other end free

Description : A column of length l is fixed at both ends. The equivalent length of the column is (A) l/2 (B) l/√2 (C) l (D) 2 l

Last Answer : (A) l/2

Description : A column of length (l) with both ends fixed may be considered as equivalent to a column of length __________ with both ends hinged. (a) l/8 (b) l/4 (c) l/2 (d) l

Last Answer : c) l/2

Description : Columns of given length, cross-section and material have different values of buckling loads for different end conditions. The strongest column is one whose (A) One end is fixed and other end is hinged (B) Both ... (C) One end is fixed and the other end entirely free (D) Both the ends are fixed

Last Answer : (D) Both the ends are fixed

Description : Columns of given length, cross-section and material have different values of buckling loads for different end conditions. The strongest column is one whose (a) One end is fixed and other end is hinged (b) ... (c) One end is fixed and the other end entirely free (d) Both the ends are fixed

Last Answer : (d) Both the ends are fixed

Description : While designing the pile as a column, the end conditions are nearly (A) Both ends hinged (B) Both ends fixed (C) One end fixed and other end hinged (D) One end fixed and other end free

Last Answer : Answer: Option C

Description : A column of length 4m with both ends fixed may be considered as equivalent to a column of length ………….with both ends hinged. (a) 2 m (b) 1 m (c) 3 m (d) 6 m

Last Answer : For a long column subjected to 1 point axial compressive load, its buckling strength will be maximum when its

Description : According to Euler’s column theory, the crippling load for a column of length (l) fixed at both ends is __________ the crippling load for a similar column hinged at both ends. (a) equal to (b) two times (c) four times (d) eight times

Last Answer : (c) four times

Description : In a cantilever subjected to a concentrated load (W) at the free end and having length =l, Maximum bending moment is (a) Wl at the free end (b) Wl at the fixed end (c) Wl/2 at the fixed end (d) Wl at the free end

Last Answer : (b) Wl at the fixed end

Description : The effective length of a R.C column continuing through two storeys, properly restrained at both ends in position and direction, is (a) 0.50 L (b) 0.75 L (c) L (d) 2 L

Last Answer : (b) 0.75 L

Description : The Effective length of a column is defined as the [ A ] length between the fixed joints [ B ] length between the points of contra flexure [ C ] unsupported length of the column [ D ] Both (a) and (c)

Last Answer : [ B ] length between the points of contra flexure

Description : Euler's formula states that the buckling load for a column of length , both ends hinged and whose least moment of inertia and modulus of elasticity of the material of the column are and respectively, is given by the relation (A) P = ²EI/l² (B) P = /EI (C) P = /l² (D) P = ²EI/l

Last Answer : (A) P = ²EI/l²

Description : If the length of a combined footing for two columns l metres apart is L and the projection on the left side of the exterior column is x, then the projection y on the right side of the exterior column, in order to have a uniformly distributed ... l - ) (C) y = L/2 - (l + ) (D) y = L/2 - (l - )

Last Answer : Answer: Option D

Description : A pile of length carrying a uniformly distributed load per metre length is suspended at the centre and from other two points 0.15 L from either end ; the maximum hogging moment will be (A) WL²/15 (B) WL²/30 (C) WL²/60 (D) WL²/90

Last Answer : Answer: Option D

Description : A cantilever carrying a uniformly distributed load W over its full length is propped at its free end such that it is at the level of the fixed end. The bending moment will be zero at its free end also at ... point of the cantilever (C) 1/4th length from free end (D) 3/4th length from free end

Last Answer : (D) 3/4th length from free end

Description : If the length of a wall on either side of a lintel opening is at least half of its effective span L, the load W carried by the lintel is equivalent to the weight of brickwork contained in an equilateral triangle, producing a maximum bending moment (A) WL/2 (B) WL/4 (C) WL/6 (D) WL/8

Last Answer : Answer: Option C

Description : A compound pipe of diameter d1, d2 and d3 having lengths l1, l2 and l3 is to be replaced by an equivalent pipe of uniform diameter d and of the same length (l) as that of the compound pipe. The size of the equivalent pipe is given by (A) l/d² = + + (B) l/d³ = + ) + (C) = + + (D)

Last Answer : Answer: Option D

Description : The maximum deflection due to a load W at the free end of a cantilever of length L and having  flexural rigidity EI, is  (A) WL²/2EI (B) WL²/3EI (C) WL3 /2EI (D) WL3 /3EI

Last Answer : (D) WL3 /3EI

Description : The deflection due to couple M at the free end of a cantilever length L is  (A) ML/EI (B) 2ML/EI (C) ML²/2E (D) M²L/2EI

Last Answer : (C) ML²/2EI

Description : Shear deflection of a cantilever of length L, cross sectional area A and shear modulus G, under a concentrated load W at its free end, is (A) (2/3) (WL/AG) (B) (1/3) (WL²/EIA) (C) (3/2) (WL/AG) (D) (3/2) (WL²/AG

Last Answer : (C) (3/2) (WL/AG

Description : The length of a column, having a uniform circular cross-section of 7.5 cm diameter and whose ends are hinged, is 5 m. If the value of E for the material is 2100 tonnes/cm2 , the permissible maximum crippling load will be (A) 1.288 tonnes (B) 12.88 (C) 128.8 tonnes (D) 288.0

Last Answer : (B) 12.88

Description : A cantilever of length 3m carries a point load of 60 KN at a distance of 2m from the fixed end.If E= 2×105 and I=108, what is the deflection at the free end?. a.7 mm b.14 mm c.26 mm d.52 mm.

Last Answer : b.14 mm

Description : To ensure that the hogging bending moment at two points of suspension of a pile of length L equals the sagging moment at its centre, the distances of the points of suspension from either end, is (A) 0.107 L (B) 0.207 L (C) 0.307 L (D) 0.407 L

Last Answer : Answer: Option B

Description : The general expression for the B.M. of a beam of length l is the beam carries M = (wl/2) x - (wx²/2)  (A) A uniformly distributed load w/unit length  (B) A load varying linearly from zero at one end to w at the other end  (C) An isolated load at mid span  (D) None of these 

Last Answer : (A) A uniformly distributed load w/unit length 

Description : The height of a water column equivalent to a pressure of 0.15 MPa is (A) 15.3 m (B) 25.3 m (C) 35.3 m (D) 45.3 m

Last Answer : The height of a water column equivalent to a pressure of 0.15 MPa can be calculated using the hydrostatic equation: Pressure (P) = Density of water (rho) * Acceleration due to gravity (g) * Height (h) ... s^2) = 0.15 m Therefore, the height of the water column would be approximately 0.15 meters.

Description : Top bars are extended to the projecting parts of the combined footing of two columns Ldistance apart for a distance of (A) 0.1 L from the outer edge of column (B) 0.1 L from the centre edge of column (C) Half the distance of projection (D) One-fourth the distance of projection

Last Answer : Answer: Option B

Description : The maximum load to which a fillet joint of length can be subjected to, is  (A) 0.7 × S × fillet size × L (B) 2 × S × fillet size × L (C) Permissible shear stress × fillet size × L (D) (S × fillet size × L)/3 

Last Answer : (A) 0.7 × S × fillet size × L

Description : While using three moments equation, a fixed end of a continuous beam is replaced by an additional span of (A) Zero length (B) Infinite length (C) Zero moment of inertia (D) None of the above

Last Answer : (A) Zero length

Description : If is the difference in height between end points of a chain of length , the required slope correction is (A) h²/2l (B) h/2l (C) h²/l (D) 2h²/2l

Last Answer : (A) h²/2l

Description : P = /L² is the equation for Euler's crippling load if  (A) Both the ends are fixed  (B) Both the ends are hinged  (C) One end is fixed and other end is free  (D) One end is fixed and other end is hinged

Last Answer : (B) Both the ends are hinged

Description : The diameter of the column head support a flat slab, is generally kept (A) 0.25 times the span length (B) 0.25 times the diameter of the column (C) 4.0 cm larger than the diameter of the column (D) 5.0 cm larger than the diameter of the column

Last Answer : Option A

Description : Pick up the correct statement from the following (A) The ratio of the up flux and down flux just above the snow surface, is called albedo (B) Spectral albedo of snow is calculated for the semi- ... equivalent height of snow is the height of water column obtained by melting snow (D) All of these

Last Answer : Answer: Option D

Description : In a reinforced concrete column, the cross –sectional area of steel bar is as and that of concrete ia AC; the equivalent area of the section n terms of concrete is equal to. (a) As+mAc (b) Ac+mAs (c) As-mAc (d) Ac-mAs

Last Answer : (b) Ac+mAs

Description : A string of length L is fixed between two points. If a standing wave of 5 nodes is produced, what is the relationship between the string's length, L, and its wavelength?

Last Answer : ANSWER: WAVELENGTH = 1/2 L

Description : In case of cantilever, irrespective of the type of loading the maximum bendry moment and maximum shear force occur at a.107 dynes b.Free end c.2/3 of the length, from the free end d.Centre of the beam e.Fixed end

Last Answer : e. Fixed end

Description : Maximum slope in a cantilever beam with UDL w over the entire length will be a. At the free end. b. At the fixed end. c. At the centre d. None.

Last Answer : a. At the free end.

Description : Maximum deflection in a cantilever beam with UDL w over the entire length will be a. At the free end. b. At the fixed end. c. At the centre d. None.

Last Answer : a. At the free end.

Description : The ratio of crippling loads of a column having both the ends fixed to the column having both the  ends hinged, is  (A) 1  (B) 2  (C) 3  (D) 4 

Last Answer : (D) 4 

Description : The Effective length of braced column generally varies…………the unsupported length of the column [ A ] 0.25 to 0.50 times [ B ] 0.50 to 1.00 times [ C ] 1.00 to 1.50 times [ D ] 2.00 to 2.50 times

Last Answer : [ B ] 0.50 to 1.00 times

Description : If W is total load per unit area on a panel, D is the diameter of the column head, L is the span in two directions, then the sum of the maximum positive bending moment and average of the negative bending moment for the design of the span ... (L + 2D/3)² (C) WL/10 (L - 2D/3)² (D) WL/12 (L - D/3)²

Last Answer : Answer: Option C

Description : To pump water from a water reservoir 3 m deep and maximum water level at 135 m, a pump is  installed to lift water up to R.L. 175 m at a constant rate of 36,00,000 litres per hour. If the length  of the ... the water horse power of the pump is  (A) 400  (B) 450  (C) 500 (D) 600

Last Answer : (D) 600

Description : δ = (W a 2 b 2 ) / (3 EIL) is the value of deflection for ______ A. simply supported beam which has central point load B. simply supported beam which has eccentric point load C. simply supported beam which has U.D.L. point load per unit length D. fixed beam which has central point load

Last Answer : B. simply supported beam which has eccentric point load

Description : δ = (W a 2 b 2 ) / (3 EIl) is the value of deflection for ______ a. simply supported beam which has central point load b. simply supported beam which has eccentric point load c. simply supported beam which has U.D.L. point load per unit length d. fixed beam which has central point load

Last Answer : b. simply supported beam which has eccentric point load

Description : The length of a column, having a uniform circular cross-section of 7.5 cm diameter and whose endsare hinged, is 5 m. If the value of E for the material is 2100 tonnes/cm2, the permissible maximumcrippling load will be (a) 1.288 tonnes (b) 12.88 (c) 128.8 tonnes (d) 288.0

Last Answer : (b) 12.88

Description : A cantilever of length 2 cm and depth 10 cm tapers in plan from a width 24 cm to zero at its free  end. If the modulus of elasticity of the material is 0.2 × 106  N/mm2 , the deflection of the free end,  is  (A) 2 mm  (B) 3 mm  (C) 4 mm  (D) 5 mm

Last Answer : (D) 5 mm

Description : For a continuous floor slab supported on beams, the ratio of end span length and intermediate span length, is (A) 0.6 (B) 0.7 (C) 0.8 (D) 0.9

Last Answer : Answer: Option D

Description : The sinusoidal wave `y(x,t) = ym sin(kx-omegat)` is incident on the fixed end of a string at `x = L`. The reflected wave is given by :-

Last Answer : The sinusoidal wave `y(x,t) = ym sin(kx-omegat)` is incident on the fixed end of a string at `x = L` ... (kx+omegat-kL)` D. `y_(m)sin(kx+omegat-2kL)`