The graphical method of Mohr's circle represents shear stress (τ) on ______

a. X-axis

b. Y-axis

c. Z-axis

d. None of the above

1 Answer

Answer :

b. Y-axis

Related questions

Description : In Mohr’s circle of strain, y-axis represents a. Shear strain b. Half of shear strain c. Normal strain d. Half of normal strain

Last Answer : b. Half of shear strain

Description : In Mohr's circle method, compressive direct stress is represented on ____ a. positive x-axis b. positive y-axis c. negative x-axis d. negative y-axis

Last Answer : c. negative x-axis

Description : Which of the following formulae is used to calculate tangential stress, when a member is subjected to stress in mutually perpendicular axis and accompanied by a shear stress? a. [(σ x - σ y )/2 ]sin θ - τ cos 2θ b. [(σ x - ... τ cos 2θ c. [(σ x - σ y )/2 ]sin θ - τ 2 cos θ d. None of the above

Last Answer : c. [(σ x – σ y )/2 ]sin θ – τ 2 cos θ

Description : Mohr’s stress circle is named so because it has equation of the form a. x^2 + y^2 = r^2 b. (x-a)^2 + y^2 = r^2 c. (x-a)^2 + (y-b)^2 = r^2 d. It was desired by German Engineer Otto Mohr

Last Answer : b. (x-a)^2 + y^2 = r^2

Description : Which of the following stresses can be determined using Mohr's circle method? a. Torsional stress b. Bending stress c. Principal stress d. All of the above

Last Answer : c. Principal stress

Description : The magnitude of maximum shear stress is (a) ± (1/2)[ ((σx –σy) 2 + 4 τ 2 )) 0.5 ] (b) ± (1/2)[ (1/2)((σx –σy) 2 + 4 τ 2 )) 0.5 ] (c) ± (1/2)[ ((1/2)(σx –σy) 2 + 4 τ 2 )) 0.5 ] (d) None

Last Answer : (a) ± (1/2)[ ((σx –σy) 2 + 4 τ 2 )) 0.5 ]

Description : The graphical representation of variation of axial load on y axis and position of cross section along x axis is called as _____ (a) Bending moment diagram (b) Shear force diagram (c) Stress-strain diagram (d) Trust diagram

Last Answer : (d) Trust diagram

Description : Maximum principal stress is equal to (a) (σx + σy)/2 + [ (σx –σy) 2 + τ 2 ] 0.5 (b) (σx + σy)/2 + 0.5 [ (σx –σy) 2 + τ 2 ] 0.5 (c) (σx + σy)/2 + 0.5 [ (σx –σy) 2 + 4τ 2 ] 0.5 (d) None

Last Answer : (c) (σx + σy)/2 + 0.5 [ (σx –σy) 2 + 4τ 2 ] 0.5

Description : The magnitude of principal stresses due to complex stresses is (a) (1/2)[ (σ x + σ y ) ± ((σ x –σ y ) 2 + 4 τ 2 )) 0.5 ] (b) (1/2)[ (σx + σy) ± (1/2)((σx –σy) 2 + 4 τ 2 )) 0.5 ] (c) (1/2)[ (σx + σy) ± ((1/2)(σx –σy) 2 + 4 τ 2 )) 0.5 ]

Last Answer : (a) (1/2)[ (σ x + σ y ) ± ((σ x –σ y ) 2 + 4 τ 2 )) 0.5 ]

Description : According to the ASME code, maximum allowable shear stress is taken as X% of yield strength or Y% of ultimate strength. a) X=30 Y=18 b) X=30 Y=30 c) X=18 Y=18 d) X=18 Y=30

Last Answer : a) X=30 Y=18

Description : According to the ASME code, maximum allowable shear stress is taken as X% of yield strength or Y% of ultimate strength. a) X=30 Y=18 b) X=30 Y=30 c) X=18 Y=18 d) X=18 Y=30

Last Answer : a) X=30 Y=18

Description : The Mohr's straight theory is based on the following fact: (A) Material fails essentially by shear (B) Ultimate strength of the material is determined by the stress in the plane of slip (C) Failure criterion is independent of the intermediate principal stress (D) All the above

Last Answer : Answer: Option D

Description : Symbols for principal stresses are a. Firstly σ, τ & γ b. Secondly σ 1 , σ 2 & σ 3

Last Answer : b. Secondly σ 1 , σ 2 & σ 3

Description : Principal stresses are found by a. Analytical method b. Graphical method c. Analytical & graphical methods d. None

Last Answer : c. Analytical & graphical methods

Description : The shear plane in case of bolts should (a) be across threaded portion of shank (b) be parallel to axis of bolt (c) be normal to threaded portion of shank (d) never be across the threaded portion (e) none of the above.

Last Answer : (d) never be across the threaded portion

Description : Shafts are subjected to ______ forces. a) Compressive b) Tensile c) Shear d) None of the listed

Last Answer : b) Tensile

Description : Shafts are subjected to ______ forces. a) Compressive b) Tensile c) Shear d) None of the listed

Last Answer : b) Tensile

Description : The spokes of the flywheel are subjected to 1. direct shear stress 2. torsional shear stress 3. tensile stress 4. compressive stress

Last Answer : 3. tensile stress

Description : The rim of the flywheel is subjected to, 1. direct tensile stress and bending stress 2. torsional shear stress and bending stress 3. direct shear stress and bending stress 4. compressive stress and bending stress

Last Answer : 1. direct tensile stress and bending stress

Description : The spokes of the flywheel are subjected to, (A) Direct shear stress (B) Torsional shear stress (C) Tensile stress (D) Compressive stress

Last Answer : (C) Tensile stress

Description : The rim of the flywheel is subjected to, (A) Direct tensile stress and bending stress (B) Torsional shear stress and bending stress (C) Direct shear stress and bending stress

Last Answer : (A) Direct tensile stress and bending stress

Description : The leaves of multi-leaf springs are subjected to (A) bending stress (B) shear stress (C) axial stress (D) all of the above

Last Answer : (A) bending stress

Description : When the helical torsion spring is subjected to torque, the type of stress induced in the spring wire is, (A) Tensile stress (B) Compressive stress (C) Bending stress (D) Torsional shear stress

Last Answer : (C) Bending stress

Description : When the helical compression spring is subjected to axial compressive force, the type of stress induced in the spring wire is, (A) Tensile stress (B) Compressive stress (C) Bending stress (D) Torsional shear stress

Last Answer : (D) Torsional shear stress

Description : The maximum shear stress in spring wire is induced at (A) Inner surface of the coil (B) Outer surface of the coil (C) Central surface of the coil (D) End coils

Last Answer : (A) Inner surface of the coil

Description : Wahl factor to account for direct shear stress and stress concentration due to curvature for helical springs is given by, (A) (4C - 1/4C - 4) + 0.615/C (B) (4C - 1/4C + 4) + 0.615/C (C) (4C + 1/4C - 4) + 0.615/C (D) (4C + 1/4C + 4) + 0.615/C

Last Answer : (A) (4C - 1/4C - 4) + 0.615/C

Description : When the helical extension spring is subjected to axial tensile force, the type of stress induced in the spring wire is, (A) Tensile stress (B) Compressive stress (C) Bending stress (D) Torsional shear stress

Last Answer : (D) Torsional shear stress

Description : Parallel fillet welds are under (i) Shear stress (ii)Compressive stress (iii)Tensile stress (iv)None

Last Answer : (i) Shear stress

Description : Transverse fillet welds are under (i) Shear stress (ii) Compressive stress (iii) Tensile stress

Last Answer : (iii) Tensile stress

Description : Butt welds are under (i) Shear stress (ii) Compressive stress (iii) Tensile stress

Last Answer : (iii) Tensile stress

Description : If a circular shaft is welded to the plate by means of circumferential fillet, then the shaft is subjected to torsional moment M. If throat of weld is t, then torsional shear stress is given by a) M/2πtr2 b) M/πtr2 c) M/4πtr2 d) None of the listed

Last Answer : a) M/2πtr2

Description : Parallel fillet weld and transverse fillet weld both have the plane in which maximum shear stress occurs at 45’ to the leg dimension. a) True b) False

Last Answer : b) False

Description : When a nut is tightened by placing a washer below it, the threads of bolt are subjected to (A) Direct shear stress (B) Torsional shear stress (C) Tensile stress (D) Compressive stress

Last Answer : (A) Direct shear stress

Description : While designing screw threads, adequate length of engaged threads between the screw and nut is provided so as to prevent failure of threads due to (A) Direct shear stress (B) Torsional shear stress (C) Tensile stress (D) Compressive stress

Last Answer : (A) Direct shear stress

Description : When a nut is tightened by placing a washer below it, the shank of bolt is subjected to (A) Direct shear stress (B) Torsional shear stress (C) Tensile stress (D) Compressive stress

Last Answer : (C) Tensile stress

Description : Find the shear stress in a flange at the junction of hub in rigid flanged coupling if torsional moment is 2980N-m and diameter of hub being 125mm. Also the thickness of flange is 25mm. a) 6.77N/mm2 b) 10.24N/mm2 c) 4.84N/mm2 d) 4.22N/mm2

Last Answer : c) 4.84N/mm2

Description : The hub is treated as a solid shaft while calculating torsional shear stress in the hub. a) True b) False

Last Answer : b) False

Description : Among maximum shear stress theory and distortion energy theory, which gives the higher value shear yield strength? a) Maximum shear stress theory b) Distortion energy theory c) Both give equal values d) Vary from material to material

Last Answer : b) Distortion energy theory

Description : A muff coupling is connecting two shafts. The torque involved is 650N-m. The shaft diameter is 45mm with length and breadth of the key being 14mm and 80mm respectively. Find the shear stress induced in the key. a) 30.2N/mm2 b) 25.8N/mm2 c) 34.4N/mm2 d) None of the listed

Last Answer : b) 25.8N/mm2

Description : Maximum shear stress in transverse fillet weld of leg h and length l is a) P/hl b) 1.21P/hl c) P/1.21hl d) None of the listed

Last Answer : b) 1.21P/hl

Description : A force 2P is acting on the double transverse fillet weld. Leg of weld is h and length l. Determine the shear stress in a plane inclined at θ with horizontal. a) PSinθ(Sinθ+Cosθ)/hl b) P(Sinθ+Cosθ)/hl c) Pcosθ(Sinθ+Cosθ)/hl d) None of the listed

Last Answer : a) PSinθ(Sinθ+Cosθ)/hl

Description : If yielding strength=400N/mm2, the find the permissible shear stress according to ASME standards. a) 72 N/mm2 b) 76 N/mm2 c) 268 N/mm2 d) 422 N/mm2

Last Answer : a) 72 N/mm2

Description : A shaft is subjected to the...... A. Normal stress B. Bending stress C. Shear stress D. Combine stress E. All types

Last Answer : E. All types

Description : Maximum shear stress in transverse fillet weld of leg h and length l is a) P/hl b) 1.21P/hl c) P/1.21hl d) None of the listed

Last Answer : b) 1.21P/hl

Description : A force 2P is acting on the double transverse fillet weld. Leg of weld is h and length l. Determine the shear stress in a plane inclined at θ with horizontal. a) PSinθ(Sinθ+Cosθ)/hl b) P(Sinθ+Cosθ)/hl c) Pcosθ(Sinθ+Cosθ)/hl d) None of the listed

Last Answer : a) PSinθ(Sinθ+Cosθ)/hl

Description : The compressive stress induced in a square key is, (A) Equal to shear stress (B) Four times of shear stress (C) Twice of shear stress (D) Half of shear stress

Last Answer : (C) Twice of shear stress

Description : Maximum shear stress theory is used for (A) Cast iron shafts (B) Steel shafts (C) Flexible shafts (D) Plastic shafts

Last Answer : (B) Steel shafts

Description : A transmission shaft subjected to pure bending moment should be designed on the basis of (A) Maximum principal stress theory (B) Maximum shear stress theory (C) Distortion energy theory (D) Goodman or Soderberg diagrams

Last Answer : (A) Maximum principal stress theory

Description : The hub is treated as a solid shaft while calculating torsional shear stress in the hub. a) True b) False

Last Answer : b) False

Description : Among maximum shear stress theory and distortion energy theory, which gives the higher value shear yield strength? a) Maximum shear stress theory b) Distortion energy theory c) Both give equal values d) Vary from material to material

Last Answer : b) Distortion energy theory