In Mohr’s circle of strain, y-axis represents

a. Shear strain

b. Half of shear strain

c. Normal strain

d. Half of normal strain

1 Answer

Answer :

b. Half of shear strain

Related questions

Description : The graphical method of Mohr's circle represents shear stress (τ) on ______ a. X-axis b. Y-axis c. Z-axis d. None of the above

Last Answer : b. Y-axis

Description : In Mohr's circle method, compressive direct stress is represented on ____ a. positive x-axis b. positive y-axis c. negative x-axis d. negative y-axis

Last Answer : c. negative x-axis

Description : Mohr’s stress circle is named so because it has equation of the form a. x^2 + y^2 = r^2 b. (x-a)^2 + y^2 = r^2 c. (x-a)^2 + (y-b)^2 = r^2 d. It was desired by German Engineer Otto Mohr

Last Answer : b. (x-a)^2 + y^2 = r^2

Description : Which of the following stresses can be determined using Mohr's circle method? a. Torsional stress b. Bending stress c. Principal stress d. All of the above

Last Answer : c. Principal stress

Description : The shear plane in case of bolts should (a) be across threaded portion of shank (b) be parallel to axis of bolt (c) be normal to threaded portion of shank (d) never be across the threaded portion (e) none of the above.

Last Answer : (d) never be across the threaded portion

Description : Which of the following formulae is used to calculate tangential stress, when a member is subjected to stress in mutually perpendicular axis and accompanied by a shear stress? a. [(σ x - σ y )/2 ]sin θ - τ cos 2θ b. [(σ x - ... τ cos 2θ c. [(σ x - σ y )/2 ]sin θ - τ 2 cos θ d. None of the above

Last Answer : c. [(σ x – σ y )/2 ]sin θ – τ 2 cos θ

Description : Under complex loading, if elastic limit reaches in tension, then failure occurs due to (a) Firstly Maximum principal strain theory (b) Secondly Maximum principal theory of strain energy (c) Thirdly Maximum shear stress theory (d) None

Last Answer : (d) None

Description : A ductile material may not meet a failure if it has been tested for the theories of failure (a) Firstly Maximum Shear Stress Theory (b) Secondly Maximum Shear Strain Energy Theory (c) Both (a) & (b) (d) None

Last Answer : (c) Both (a) & (b)

Description : Shear strain energy theory is also known as (a) Coulomb’s theory (b) Distortion energy theory (c) Rankine theory (d) None

Last Answer : (b) Distortion energy theory

Description : Shear strain energy theory is also known as (a) Von Mises Theory (b) Coulomb’s theory (c) Rankine theory (d) None

Last Answer : (a) Von Mises Theory

Description : Shear strain energy theory is also known as ( a) Huber theory (b) Rankine theory (c) Mises-Hencky theory (d) None

Last Answer : (c) Mises-Hencky theory

Description : Shear strain energy under principal tensile stresses σ1 and σ2 is (a) (1/12E) (σ1 — σ2) 2 + σ2 2 — σ1 2 ) (b) (1/12G) (σ1 — σ2) 2 + σ2 2 + σ1 2 ) (c) (1/12K) (σ1 — σ2) 2 + σ2 2 + σ1 2 ) (d) None

Last Answer : (b) (1/12G) (σ1 — σ2) 2 + σ2 2 + σ1 2 )

Description : The graphical representation of variation of axial load on y axis and position of cross section along x axis is called as _____ (a) Bending moment diagram (b) Shear force diagram (c) Stress-strain diagram (d) Trust diagram

Last Answer : (d) Trust diagram

Description : If the length of the shank is doubled, then strain energy absorbed by shank a) Doubles b) Remains same c) Increases 4 time d) Become half

Last Answer : a) Doubles

Description : When the shear strength of nut is half the tensile strength of bolt, the height of nut (h) should be (A) h = 0.5 dc (B) h = 0.25 dc (C) h = 0.75 dc (D) h = dc

Last Answer : (B) h = 0.25 dc

Description : The compressive stress induced in a square key is, (A) Equal to shear stress (B) Four times of shear stress (C) Twice of shear stress (D) Half of shear stress

Last Answer : (C) Twice of shear stress

Description : The Mohr's straight theory is based on the following fact: (A) Material fails essentially by shear (B) Ultimate strength of the material is determined by the stress in the plane of slip (C) Failure criterion is independent of the intermediate principal stress (D) All the above

Last Answer : Answer: Option D

Description : A shaft is subjected to the...... A. Normal stress B. Bending stress C. Shear stress D. Combine stress E. All types

Last Answer : E. All types

Description : Angle of obliquity is defined as a. Angle between the plane on which stresses are evaluated and one of the given planes b. Angle between resultant stress and the plane of given normal stress c. Angle between resultant stress and shear stress d. Angle between resultant stress and normal stress

Last Answer : d. Angle between resultant stress and normal stress

Description : Principal planes are those planes on which a. Normal stress is maximum b. Normal stress is minimum c. Normal stress is either maximum or minimum d. Shear stress is maximum

Last Answer : c. Normal stress is either maximum or minimum

Description : The normal stress is perpendicular to the area under considerations, while the shear stress acts over the area. a) True b) False

Last Answer : a) True

Description : The angle of obliquity is the angle between the a. Firstly Resultant and the shear stress b. Secondly Resultant & the normal stress c. Both (a) & (b) d. None

Last Answer : b. Secondly Resultant & the normal stress

Description : Principal stresses are a. Firstly Maximum and minimum shear stresses b. Secondly Maximum and minimum normal stresses c. Both (a) & (b) d. None

Last Answer : b. Secondly Maximum and minimum normal stresses

Description : A principal stress is a a. Shear stress with zero normal stress b. Normal stress with zero shear stress c. Both (a) & (b) d. None

Last Answer : b. Normal stress with zero shear stress

Description : Does a plane of maximum shear stress contain a? (a) Normal stress (b) Bending stress (c) Torsional shear stress (d) None

Last Answer : (a) Normal stress

Description : On the planes of maximum shear, there are (a) Normal stresses (b) Bending stresses (c) Bucking stresses (d) None

Last Answer : (a) Normal stresses

Description : A principal plane is a plane of (a) Only normal stress (b) Only shear stress (c) Only bending stress (d) None

Last Answer : (a) Only normal stress

Description : Principal stress is the magnitude of ________ stress acting on the principal plane. a. Normal stress b. Shear stress c. Both a. and b. d. None of the above

Last Answer : a. Normal stress

Description : According to the ASME code, maximum allowable shear stress is taken as X% of yield strength or Y% of ultimate strength. a) X=30 Y=18 b) X=30 Y=30 c) X=18 Y=18 d) X=18 Y=30

Last Answer : a) X=30 Y=18

Description : According to the ASME code, maximum allowable shear stress is taken as X% of yield strength or Y% of ultimate strength. a) X=30 Y=18 b) X=30 Y=30 c) X=18 Y=18 d) X=18 Y=30

Last Answer : a) X=30 Y=18

Description : Modulus of resilience is defined as a) Strain energy per unit volume b) Strain energy per unit area c) Independent of strain energy d) None of the mentioned

Last Answer : a) Strain energy per unit volume

Description : The strain energy (E) stored in the spring is given by Where P=Load and δ = deflection of spring (A) Pδ/2 (B) 2Pδ (C) Pδ/3 (D) Pδ/4

Last Answer : (A) Pδ/2

Description : The strain energy stored in a spiral spring is given by? a) 12M2L/Ebtɜ b) 6M2L/Ebtɜ c) 8M2L/Ebtɜ d) None of the listed

Last Answer : b) 6M2L/Ebtɜ

Description : For a homogeneous & isotropic body under hydrostatic pressure, which theory of elastic failure fails (a) Firstly Maximum Principal Theory (b) Secondly Maximum Principal strain Theory (c) Thirdly Maximum Principal Energy Theory (d) None

Last Answer : (c) Thirdly Maximum Principal Energy Theory

Description : Under complex or simple loading, strain energy is (a) External work done (b) Internal work done (c) Both internal and external work (d) None

Last Answer : (b) Internal work done

Description : Under complex loading, if elastic limit reaches in tension, then failure occurs due to (a) Firstly Maximum principal strain theory (b) Secondly Maximum principal theory of strain energy (c) Thirdly Maximum Principal stress theory (d) None

Last Answer : (c) Thirdly Maximum Principal stress theory

Description : A ductile material may not meet a failure if it has been tested for the theories of failure (a) Firstly Maximum Principal Theory (b) Secondly Maximum Principal Strain Theory (c) Thirdly Maximum principal strain energy theory (d) None

Last Answer : (d) None

Description : Maximum total strain energy theory is applicable to (a) Ductile materials (b) Brittle materials (c) Composite materials (d) None

Last Answer : (a) Ductile materials

Description : Maximum total strain energy theory is applicable to (a) Ductile materials (b) Brittle materials (c) Composite materials (d) None

Last Answer : (b) Brittle materials

Description : Maximum total strain energy is equal to (a) (σ1 2 +σ2 2 )/2E (b) ( σ1 2 +σ2 2 + 2μ σ1 σ2)/2E (c) ( σ1 2 +σ2 2 — 2μ σ1 σ2)/2E (d) None

Last Answer : (c) ( σ1 2 +σ2 2 — 2μ σ1 σ2)/2E

Description : Maximum total strain energy theory is also known as (a) Huber theory (b) Rankine theory (c) St.Venant’s theory (d) None

Last Answer : (a) Huber theory

Description : Maximum total strain energy theory is also known as (a) Guest’s theory (b) Haigh theory (c) St.Venant’s theory (d) None

Last Answer : (b) Haigh theory

Description : Maximum principal strain is equal to when σ1 and σ2 are tensile (a) (σ1 –μσ2)/E (b) (σ1 + μσ2)/E (c) (–σ1 –μσ2)/E (d) None

Last Answer : (a) (σ1 –μσ2)/E

Description : Maximum principal strain theory is also called as (a) Guest’s theory (b) Haigh theory (c) St.Venant’s theory (d) None

Last Answer : (c) St.Venant’s theory

Description : Maximum principal strain theory is applicable to (a) Ductile materials (b) Brittle materials (c) Composite materials (d) None

Last Answer : (b) Brittle materials

Description : The total strain energy for a unit cube subjected to three principal stresses is given by? a) U= [(σέ) 1 + (σέ) 2+ (σέ) 3]/3 b) U= [(σ12+σ22+σ32)/2E] – (σ1σ2+σ2σ3+σ3σ1)2μ c) U= [(σέ) 1 + (σέ) 2+ (σέ) 3]/4 d) None of the mentioned

Last Answer : b) U= [(σ12+σ22+σ32)/2E] – (σ1σ2+σ2σ3+σ3σ1)2μ

Description : Why do we determine principal stresses? a. Failure is due to simple stress or strain b. Failure is due to complex stress or strain c. Both (a) & (b) d. None

Last Answer : a. Failure is due to simple stress or strain

Description : The principal strain due to σ1(tensile) and σ2 (Compressive ) stress is (a) Firstly (b)Secondly (c)Thirdly (d) None

Last Answer : (b)Secondly

Description : The elastic stress strain behavior of rubber is A. Linear B. Nonlinear C. Plastic D. No fixed relationship

Last Answer : B. Nonlinear

Description : Bulk modulus of elasticity is a. Tensile stress / Tensile strain b. Shear stress / Shear strain c. Tensile stress / Shear strain d. Normal stress on each face of cube / Volumetric strain

Last Answer : d. Normal stress on each face of cube / Volumetric strain