Maximum principal strain theory is also called as

(a) Guest’s theory

(b) Haigh theory

(c) St.Venant’s theory

(d) None

1 Answer

Answer :

(c) St.Venant’s theory

Related questions

Description : Maximum total strain energy theory is also known as (a) Guest’s theory (b) Haigh theory (c) St.Venant’s theory (d) None

Last Answer : (b) Haigh theory

Description : Maximum total strain energy theory is also known as (a) Huber theory (b) Rankine theory (c) St.Venant’s theory (d) None

Last Answer : (a) Huber theory

Description : Maximum shear stress theory is also called as (a) Guest’s theory (b) Haigh theory (c) Rankine theory (d) None

Last Answer : (a) Guest’s theory

Description : Maximum strain theory for the failure of a material at the elastic limit, is known as  (A) Guest's or Trecas' theory  (B) St. Venant's theory  (C) Rankine's theory  (D) Haig's theory 

Last Answer : (B) St. Venant's theory

Description : Which theory is perfect for design of shaft when it mades from brittle materials........... A. Rankine theory B. Guest's theory C. Vonmises theory D. St. Venant's theory.

Last Answer : A. Rankine theory

Description : Maximum principal stress theory for the failure of a material at elastic point, is known  (A) Guest's or Trecas' theory  (B) St. Venant's theory  (C) Rankine's theory  (D) Von Mises' theory

Last Answer : (C) Rankine's theory 

Description : Total strain energy theory for the failure of a material at elastic limit, is known  (A) Guest's or Trecas' theory  (B) St. Venant's theory  (C) Rankine's theory  (D) Haig's theory 

Last Answer : (D) Haig's theory 

Description : Maximum principal theory is also known as (a) Beltrami Theory (b) Maximum normal stress theory (c) Saint Venant’s theory (d) None

Last Answer : (b) Maximum normal stress theory

Description : Maximum shear stress theory for the failure of a material at the elastic limit, is known  (A) Guest's or Trecas' theory  (B) St. Venant's theory  (C) Rankine's theory  (D) Haig's theory

Last Answer : (A) Guest's or Trecas' theory

Description : Maximum shear stress theory is also called as (a) Beltrami theory (b) Haigh theory (c) Tresca theory (d) None

Last Answer : (c) Tresca theory

Description : Maximum shear stress theory is also called as (a) Beltrami theory (b) Coulomb’s theory (c) Haigh theory (d) None

Last Answer : (b) Coulomb’s theory

Description : The design of shafts made of brittle materials is based on (a) Guest’s theory (b) Rankine’s theory (c) St. Venant’s theory (d) Von Mises Theory

Last Answer : (b) Rankine’s theory

Description : For a homogeneous & isotropic body under hydrostatic pressure, which theory of elastic failure fails (a) Firstly Maximum Principal Theory (b) Secondly Maximum Principal strain Theory (c) Thirdly Maximum Principal Energy Theory (d) None

Last Answer : (c) Thirdly Maximum Principal Energy Theory

Description : Under complex loading, if elastic limit reaches in tension, then failure occurs due to (a) Firstly Maximum principal strain theory (b) Secondly Maximum principal theory of strain energy (c) Thirdly Maximum Principal stress theory (d) None

Last Answer : (c) Thirdly Maximum Principal stress theory

Description : Under complex loading, if elastic limit reaches in tension, then failure occurs due to (a) Firstly Maximum principal strain theory (b) Secondly Maximum principal theory of strain energy (c) Thirdly Maximum shear stress theory (d) None

Last Answer : (d) None

Description : A ductile material may not meet a failure if it has been tested for the theories of failure (a) Firstly Maximum Principal Theory (b) Secondly Maximum Principal Strain Theory (c) Thirdly Maximum principal strain energy theory (d) None

Last Answer : (d) None

Description : Maximum principal strain theory is applicable to (a) Ductile materials (b) Brittle materials (c) Composite materials (d) None

Last Answer : (b) Brittle materials

Description : Maximum principal theory is also known as (a) Guest Theory (b) Beltrami Theory (c) Rankine Theory (d) None

Last Answer : (c) Rankine Theory

Description : Maximum principal strain is equal to when σ1 and σ2 are tensile (a) (σ1 –μσ2)/E (b) (σ1 + μσ2)/E (c) (–σ1 –μσ2)/E (d) None

Last Answer : (a) (σ1 –μσ2)/E

Description : Shear strain energy theory is also known as (a) Coulomb’s theory (b) Distortion energy theory (c) Rankine theory (d) None

Last Answer : (b) Distortion energy theory

Description : Shear strain energy theory is also known as (a) Von Mises Theory (b) Coulomb’s theory (c) Rankine theory (d) None

Last Answer : (a) Von Mises Theory

Description : Shear strain energy theory is also known as ( a) Huber theory (b) Rankine theory (c) Mises-Hencky theory (d) None

Last Answer : (c) Mises-Hencky theory

Description : A ductile material may not meet a failure if it has been tested for the theories of failure (a) Firstly Maximum Shear Stress Theory (b) Secondly Maximum Shear Strain Energy Theory (c) Both (a) & (b) (d) None

Last Answer : (c) Both (a) & (b)

Description : Maximum total strain energy theory is applicable to (a) Ductile materials (b) Brittle materials (c) Composite materials (d) None

Last Answer : (a) Ductile materials

Description : Maximum total strain energy theory is applicable to (a) Ductile materials (b) Brittle materials (c) Composite materials (d) None

Last Answer : (b) Brittle materials

Description : The total strain energy for a unit cube subjected to three principal stresses is given by? a) U= [(σέ) 1 + (σέ) 2+ (σέ) 3]/3 b) U= [(σ12+σ22+σ32)/2E] – (σ1σ2+σ2σ3+σ3σ1)2μ c) U= [(σέ) 1 + (σέ) 2+ (σέ) 3]/4 d) None of the mentioned

Last Answer : b) U= [(σ12+σ22+σ32)/2E] – (σ1σ2+σ2σ3+σ3σ1)2μ

Description : Why do we determine principal stresses? a. Failure is due to simple stress or strain b. Failure is due to complex stress or strain c. Both (a) & (b) d. None

Last Answer : a. Failure is due to simple stress or strain

Description : Shear strain energy under principal tensile stresses σ1 and σ2 is (a) (1/12E) (σ1 — σ2) 2 + σ2 2 — σ1 2 ) (b) (1/12G) (σ1 — σ2) 2 + σ2 2 + σ1 2 ) (c) (1/12K) (σ1 — σ2) 2 + σ2 2 + σ1 2 ) (d) None

Last Answer : (b) (1/12G) (σ1 — σ2) 2 + σ2 2 + σ1 2 )

Description : The principal strain due to σ1(tensile) and σ2 (Compressive ) stress is (a) Firstly (b)Secondly (c)Thirdly (d) None

Last Answer : (b)Secondly

Description : A transmission shaft subjected to pure bending moment should be designed on the basis of (A) Maximum principal stress theory (B) Maximum shear stress theory (C) Distortion energy theory (D) Goodman or Soderberg diagrams

Last Answer : (A) Maximum principal stress theory

Description : For a homogeneous & isotropic body under hydrostatic pressure, which theory of elastic failure does not fail (a) Firstly Maximum Principal Theory (b) Secondly Maximum Shear Stress Theory (c) Thirdly Maximum Principal Energy Theory (d) None

Last Answer : (a) Firstly Maximum Principal Theory

Description : Under maximum principal stress theory, maximum principal stress is equal to (a) Allowable stress in tension (b) Allowable stress in compression (c) Allowable stress in shear (d) None

Last Answer : (a) Allowable stress in tension

Description : Maximum principal stress theory is applicable to (a) Ductile materials (b) Brittle materials (c) Composite materials (d) None

Last Answer : (b) Brittle materials

Description : Maximum Principal Stress Theory is not good for brittle materials. a) True b) False

Last Answer : b) False

Description : If compressive yield stress and tensile yield stress are equivalent, then region of safety from maximum principal stress theory is of which shape? a) Rectangle b) Square c) Circle d) Ellipse

Last Answer : b) Square

Description : Which of the following theories of failure is most appropriate for a brittle material? (a) Maximum principal strain theory (b) Maximum principal stress theory (c) Maximum shear stress theory (d) Maximum strain energy theory

Last Answer : (b) Maximum principal stress theory

Description : Maximum total strain energy is equal to (a) (σ1 2 +σ2 2 )/2E (b) ( σ1 2 +σ2 2 + 2μ σ1 σ2)/2E (c) ( σ1 2 +σ2 2 — 2μ σ1 σ2)/2E (d) None

Last Answer : (c) ( σ1 2 +σ2 2 — 2μ σ1 σ2)/2E

Description : Maximum principal stress is equal to (a) (σx + σy)/2 + [ (σx –σy) 2 + τ 2 ] 0.5 (b) (σx + σy)/2 + 0.5 [ (σx –σy) 2 + τ 2 ] 0.5 (c) (σx + σy)/2 + 0.5 [ (σx –σy) 2 + 4τ 2 ] 0.5 (d) None

Last Answer : (c) (σx + σy)/2 + 0.5 [ (σx –σy) 2 + 4τ 2 ] 0.5

Description : In a general two dimensional stress system, planes of maximum shear stress are inclined at ___ with principal planes. a. 90 degree b. 180 degree c. 45 degree d. 60 degree

Last Answer : c. 45 degree

Description : Principal planes are those planes on which a. Normal stress is maximum b. Normal stress is minimum c. Normal stress is either maximum or minimum d. Shear stress is maximum

Last Answer : c. Normal stress is either maximum or minimum

Description : The maximum number of principal stresses is a. 1 b. 3 c. 5 d. None

Last Answer : b. 3

Description : The maximum number of principal stresses is a. 2 b. 4 c. 6 d. None

Last Answer : d. None

Description : Maximum shear stress in terms of principal stresses is a. Firstly (σ 1 +σ 2 )/2 b. Secondly (σ 1 /σ 2 ) c. Thirdly (σ 1 –σ 2 )/2 d. None

Last Answer : c. Thirdly (σ 1 –σ 2 )/2

Description : The magnitude of maximum principal stress is a. Firstly (σ x +σ y )/2+ (1/2)( σ x +σ y ) +4τ 2 ) 5 b. Secondly (σ x +σ y )/2+ (1/2)( σ x -σ y ) 2 +4τ 2 ) 5 c. Thirdly (σ x +σ y )/2+ (1/2)( σ x +σ y ) 2 +4τ 2 ) 5 d. None

Last Answer : b. Secondly (σ x +σ y )/2+ (1/2)( σ x -σ y ) 2 +4τ 2 ) 5

Description : Which is the maximum principal stress? a. Firstly σ 2 b. Secondly σ 3 c. Thirdly σ 1 d. None

Last Answer : c. Thirdly σ 1

Description : The angle between a principal plane and a plane of maximum shear is a. 15 0 b. 45 0 c. 75 0 d. None

Last Answer : b. 45 0

Description : The angle between a principal plane and a plane of maximum shear is a. 30 0 b. 60 0 c. 90 0 d. None

Last Answer : d. None

Description : How many maximum shear stresses are there with three principal stresses? a. 1 b. 2 c. 3 d. None

Last Answer : c. 3

Description : Principal stresses are a. Firstly Maximum and minimum shear stresses b. Secondly Maximum and minimum normal stresses c. Both (a) & (b) d. None

Last Answer : b. Secondly Maximum and minimum normal stresses

Description : Maximum shear stress is (a) Average sum of principal stresses (b) Average difference of principal stresses (c) Average sum as well as difference of principal stresses (d) None

Last Answer : (b) Average difference of principal stresses