Theories of elastic failure is the

(a) Firstly analysis of the various failures

(b) Secondly analysis of the strength of a material

(c) Both (a) & (b)

(d) None

1 Answer

Answer :

(c) Both (a) & (b)

Related questions

Description : Theories of elastic failure establishes the (a) Firstly Reasons of failure (b) Secondly Reasons of safety (c) Both (a) & (b) (d) None

Last Answer : (c) Both (a) & (b)

Description : A ductile material may not meet a failure if it has been tested for the theories of failure (a) Firstly Maximum Shear Stress Theory (b) Secondly Maximum Shear Strain Energy Theory (c) Both (a) & (b) (d) None

Last Answer : (c) Both (a) & (b)

Description : A ductile material may not meet a failure if it has been tested for the theories of failure (a) Firstly Maximum Principal Theory (b) Secondly Maximum Principal Strain Theory (c) Thirdly Maximum principal strain energy theory (d) None

Last Answer : (d) None

Description : For a homogeneous & isotropic body under hydrostatic pressure, which theory of elastic failure does not fail (a) Firstly Maximum Principal Theory (b) Secondly Maximum Shear Stress Theory (c) Thirdly Maximum Principal Energy Theory (d) None

Last Answer : (a) Firstly Maximum Principal Theory

Description : For a homogeneous & isotropic body under hydrostatic pressure, which theory of elastic failure fails (a) Firstly Maximum Principal Theory (b) Secondly Maximum Principal strain Theory (c) Thirdly Maximum Principal Energy Theory (d) None

Last Answer : (c) Thirdly Maximum Principal Energy Theory

Description : In a ductile material, the strength are (a)Firstly Ultimate >yield > elastic limit (b) Secondly Ultimate > yield =elastic limit (c) Thirdly Ultimate=yield=elastic limit (d) None

Last Answer : (a)Firstly Ultimate >yield > elastic limit

Description : In a brittle material, the strength are (a) Firstly Ultimate >yield > elastic limit (b) Secondly Ultimate > yield =elastic limit (c) Thirdly Ultimate=yield=elastic limit (d) None

Last Answer : (c) Thirdly Ultimate=yield=elastic limit

Description : Under complex loading, if elastic limit reaches in tension, then failure occurs due to (a) Firstly Maximum principal strain theory (b) Secondly Maximum principal theory of strain energy (c) Thirdly Maximum Principal stress theory (d) None

Last Answer : (c) Thirdly Maximum Principal stress theory

Description : Under complex loading, if elastic limit reaches in tension, then failure occurs due to (a) Firstly Maximum principal strain theory (b) Secondly Maximum principal theory of strain energy (c) Thirdly Maximum shear stress theory (d) None

Last Answer : (d) None

Description : Under complex loading, theories of elastic failures ensure (a) Stability (b) Instability (c) Both stability and instability (d) None

Last Answer : (a) Stability

Description : Theories of elastic failure help in the (a) Material development (b) Development of method of manufacture (c) Both (a) & (b) (d) None

Last Answer : (c) Both (a) & (b)

Description : The angle of obliquity is the angle between the a. Firstly Resultant and the shear stress b. Secondly Resultant & the normal stress c. Both (a) & (b) d. None

Last Answer : b. Secondly Resultant & the normal stress

Description : In a body under pure shear, the magnitude and nature of the two principal stresses are a. Firstly Equals shear stress, opposite nature b. Secondly Equals shear stress, same nature c. Both (a) & (b) d. None

Last Answer : a. Firstly Equals shear stress, opposite nature

Description : Principal stresses are a. Firstly Maximum and minimum shear stresses b. Secondly Maximum and minimum normal stresses c. Both (a) & (b) d. None

Last Answer : b. Secondly Maximum and minimum normal stresses

Description : Symbols for principal stresses are a. Firstly σ, τ & γ b. Secondly σ 1 , σ 2 & σ 3

Last Answer : b. Secondly σ 1 , σ 2 & σ 3

Description : Under complex loading, theories of elastic failure establishes the (a) Margin of failure (b) Margin of safety (c) Both (a) & (b) (d) None

Last Answer : (b) Margin of safety

Description : In a body under hydrostatic pressure, the case exists (a) Firstly σ 1 > σ 2 =σ 3 (b) Secondly σ 1 = σ 2 =σ 3 (c) Thirdly σ 1 > σ 2 < σ 3 (d) None

Last Answer : (b) Secondly σ 1 = σ 2 =σ 3

Description : Under complex loading, principal stresses exist as (a) Firstly σ 1 > σ 2 =σ 3 (b) Secondly σ 1 = σ 2 =σ 3 (c) Thirdly σ 1 > σ 2 < σ 3 (d) None

Last Answer : (d) None

Description : The principal strain due to σ1(tensile) and σ2 (Compressive ) stress is (a) Firstly (b)Secondly (c)Thirdly (d) None

Last Answer : (b)Secondly

Description : Maximum shear stress in terms of principal stresses is a. Firstly (σ 1 +σ 2 )/2 b. Secondly (σ 1 /σ 2 ) c. Thirdly (σ 1 –σ 2 )/2 d. None

Last Answer : c. Thirdly (σ 1 –σ 2 )/2

Description : The magnitude of maximum principal stress is a. Firstly (σ x +σ y )/2+ (1/2)( σ x +σ y ) +4τ 2 ) 5 b. Secondly (σ x +σ y )/2+ (1/2)( σ x -σ y ) 2 +4τ 2 ) 5 c. Thirdly (σ x +σ y )/2+ (1/2)( σ x +σ y ) 2 +4τ 2 ) 5 d. None

Last Answer : b. Secondly (σ x +σ y )/2+ (1/2)( σ x -σ y ) 2 +4τ 2 ) 5

Description : Which is the maximum principal stress? a. Firstly σ 2 b. Secondly σ 3 c. Thirdly σ 1 d. None

Last Answer : c. Thirdly σ 1

Description : Nature of the three principal stresses is a. Firstly All tensile b. Secondly All compressive c. Thirdly All shear d. None

Last Answer : a. Firstly All tensile

Description : The order of magnitude of the principal stresses is a. Firstly σ 1 >σ 2 >σ 3 b. Secondly σ 2 >σ 3 >σ 1 c. Thirdly σ 1 >σ 3 >σ 2 d. None

Last Answer : a. Firstly σ 1 >σ 2 >σ 3

Description : Theories of elastic failure while dealing with brittle materials consider the failure criterion as (a) Ultimate stress (b) Yield stress (c) Both ultimate and yield stress (d) None

Last Answer : (a) Ultimate stress

Description : Theories of elastic failure while dealing with ductile materials consider the failure criterion as (a) Ultimate stress (b) Yield stress (c) Both ultimate and yield stress (d) None

Last Answer : (b) Yield stress

Description : Theories of elastic failure help to recognize (a) Weak materials (b) Strong materials (c) Both weak and strong materials (d) None

Last Answer : (c) Both weak and strong materials

Description : Finding allowable stress after the application of theories of failure ensures (a) Soundness of design (b) Lapses in design (c) Both (a) & (b) (d) None

Last Answer : (a) Soundness of design

Description : Failure of a material is called fatigue when it fails (a) at the elastic limit (b) below the elastic limit (c) at the yield point (d) below the yield point

Last Answer : (d) below the yield point

Description : The resistance to fatigue of a material is measured by (a) elastic limit (b) Young's modulus (c) ultimate tensile strength (d) endurance limit

Last Answer : (d) endurance limit

Description : _____ is a surface fatigue failure which occurs when the load on the bearing part exceeds the surface endurance strength of the material. (a) Scoring (b) Pitting (c) Corrosion

Last Answer : (b) Pitting

Description : Factor of safety for fatigue loading is the ratio of (a) elastic limit to the working stress (b) Young's modulus to the ultimate tensile strength (c) endurance limit to the working stress (d) elastic limit to the yield point

Last Answer : (c) endurance limit to the working stress

Description : Consider the following statements: 1. Failure occurs beyond elastic limit 2. Rupture takes place immediately after elastic limit 3. Permanent set occurs beyond elastic limit Which of these are considered in the theories of failure? (a) 1, 2 and 3 (b) 1 and 3 only (c) 2 and 3 only d) 1 and 2 only

Last Answer : d) 1 and 2 only

Description : The life of an individual ball bearing is the time period for which it works without any signs of failures. (a) True (b) False

Last Answer : (b) False

Description : The life of an individual ball bearing is the time period for which it works without any signs of failures. a) True b) False

Last Answer : b) False

Description : Failure of a material is termed as fatigue failure, if it fails below the yield point. The resistance to fatigue failure of a material is measured by the (A) Ultimate tensile strength (U.T.S.) (B) Endurance limit (C) Elastic limit (D) None of these

Last Answer : (B) Endurance limit

Description : Which of the following is (are) true? (A) Cast iron has poor tensile strength compared to steel (B) Failure of cast iron flywheel is sudden and total (C) Machinability of cast iron flywheel is poor compared to steel flywheel (D) All of the above

Last Answer : (D) All of the above

Description : What Are Various Theories Of Failure?

Last Answer : The failure theories are: 1. Maximum principal stress theory. 2. Maximum shear stress theory. 3. Maximum principal strain theory.

Description : Why do we determine principal stresses? a. Failure is due to simple stress or strain b. Failure is due to complex stress or strain c. Both (a) & (b) d. None

Last Answer : a. Failure is due to simple stress or strain

Description : Among maximum shear stress theory and distortion energy theory, which gives the higher value shear yield strength? a) Maximum shear stress theory b) Distortion energy theory c) Both give equal values d) Vary from material to material

Last Answer : b) Distortion energy theory

Description : The shafts will have same strength on the basis of torsional rigidity, if (A) Diameter and length of both shafts is same (B) Material of both shafts is same (C) Angle of twist for both shafts is same (D) All of above conditions are satisfied

Last Answer : (D) All of above conditions are satisfied

Description : Among maximum shear stress theory and distortion energy theory, which gives the higher value shear yield strength? a) Maximum shear stress theory b) Distortion energy theory c) Both give equal values d) Vary from material to material

Last Answer : b) Distortion energy theory

Description : Terzaghi's analysis assumes: (A) Soil is homogeneous and isotropic (B) Elastic zone has straight boundaries inclined at = to the horizontal and plastic zones fully developed (C) Failure zones do not extend above the horizontal plane through the base of the footing (D) All the above

Last Answer : Answer: Option D

Description : When a material is subjected to fatigue loading, the ratio of the endurance limit to the ultimate tensile strength is (a) 0.20 (b) 0.35 (c) 0.50 (d) 0.65

Last Answer : (c) 0.50

Description : Line joining S yt (yield strength of the material) on mean stress axis and S e (endurance limit of the component) on stress amplitude axis is called as _____ a. Goodman line b. Soderberg line c. Gerber line d. None of the above

Last Answer : b. Soderberg line

Description : The ability of a material to resist plastic deformation known as _____________ a) Tensile strength b) Yield strength c) Modulus of elasticity d) Impact strength

Last Answer : b) Yield strength

Description : Which of the following theories of failure is most appropriate for a brittle material? (a) Maximum principal strain theory (b) Maximum principal stress theory (c) Maximum shear stress theory (d) Maximum strain energy theory

Last Answer : (b) Maximum principal stress theory

Description : Strength of a shaft a. Is equal to maximum shear stress in the shaft at the time of elastic failure b. Is equal to maximum shear stress in the shaft at the time of rupture c. Is equal to torsional rigidity d. Is ability to resist maximum twisting moment

Last Answer : d. Is ability to resist maximum twisting moment

Description : A thick film bearing is a bearing (A) Where the surfaces of journal and the bearing are completely separated by a film of lubricant (B) Where the surfaces of journal and the bearing are partially ... are separated by a film created by elastic deflection of parts (D) Where there is no lubricant

Last Answer : (A) Where the surfaces of journal and the bearing are completely separated by a film of lubricant

Description : For elasto-hydrodynamic lubrication (A) There should be relative motion between the surfaces of the journal and the bearing and wedge shaped clearance space (B) There should be external source like ... be elastic deformation of the parts in contact (D) There should be metal to metal contact

Last Answer : (C) There should be elastic deformation of the parts in contact