The endurance or fatigue limit is defined as the maximum value of the stress which a polished standard specimen can

withstand without failure, for infinite number of cycles, when subjected to

(a) static load (b) dynamic load

(c) static as well as dynamic load (d) completely reversed load

1 Answer

Answer :

(d) completely reversed load

Related questions

Description : The maximum stress below which a material can withstand an infinite number of cycle of stress, is termed as the (A) Fatigue strength (B) Creep strength (C) Resilience (D) Endurance limit

Last Answer : D) Endurance limit

Description : A material being tested for endurance strength is subjected to the __________ load. (A) Impact (B) Completely reversed (C) Dynamic (D) Static & dynamic

Last Answer : B) Completely reversed

Description : A material being tested for endurance strength is subjected to the __________ load. (A) Impact (B) Completely reversed (C) Dynamic (D) Static & dynamic

Last Answer : (B) Completely reversed

Description : The relationship between the alternating stress and mean stress is given by the following equation: σ a =σ e [1-(σ m /σ u )x], where σ e is the fatigue limit for completely reversed loading. The value of x for Gerber line is equal to _________ a) 1 b) 2 c) 0.5 d) -1

Last Answer : b) 2

Description : What will happen if stresses induced due to surge in the spring exceeds the endurance limit stress of the spring. a) Fatigue Failure b) Fracture c) None of the listed d) Nipping

Last Answer : a) Fatigue Failure

Description : When a material is subjected to fatigue loading, the ratio of the endurance limit to the ultimate tensile strength is (a) 0.20 (b) 0.35 (c) 0.50 (d) 0.65

Last Answer : (c) 0.50

Description : Factor of safety for fatigue loading is the ratio of (a) elastic limit to the working stress (b) Young's modulus to the ultimate tensile strength (c) endurance limit to the working stress (d) elastic limit to the yield point

Last Answer : (c) endurance limit to the working stress

Description : _____ is a surface fatigue failure which occurs when the load on the bearing part exceeds the surface endurance strength of the material. (a) Scoring (b) Pitting (c) Corrosion

Last Answer : (b) Pitting

Description : The highest stress that a material can withstand for a specified length of time without excessive deformation is called the __________ strength. (A) Creep (B) Endurance (C) Fatigue (D) None of these

Last Answer : Option A

Description : What will happen if stresses induced due to surge in the spring exceeds the endurance limit stress of the spring. (a) Fatigue Failure (b) Fracture (c) None of the listed (d) Nipping

Last Answer : (a) Fatigue Failure

Description : The connecting rod bolts are tightened up with the initial tension greater than external load so that (A) Failure of bolt will be static (B) The resultant load on bolt will not be affected by ... ) The bolt will not fail by fatigue although the external load is fluctuating (D) All the three

Last Answer : (D) All the three

Description : The resistance to fatigue of a material is measured by (a) elastic limit (b) Young's modulus (c) ultimate tensile strength (d) endurance limit

Last Answer : (d) endurance limit

Description : In S-N diagram, the graph plotted between fatigue strength and number of stress cycles becomes horizontal for which type of materials? a. Ferrous materials b. Non-ferrous materials c. Both a. and b. d. None of the above

Last Answer : a. Ferrous materials

Description : Pick up the correct statement from the following: (A) An unconfined compression test is a special case of triaxial compression test (B) An unconfined compression test is a special case of direct ... subjected to major principal stress till it fails due to shearing along the plane of the failure

Last Answer : Option A

Description : The property of the bearing material to yield and adopt its shape to that of journal is called (A) Embeddability (B) Conformability (C) Viscosity (D) Endurance limit stress

Last Answer : (B) Conformability

Description : The property of the bearing material to allow the dust and abrasive particles to get absorbed on the surface of the lining is called (A) Embeddability (B) Conformability (C) Viscosity (D) Endurance limit stress

Last Answer : (A) Embeddability

Description : The connecting rod bolts are tightened up so that the initial tightening stress (A) Approaches yield point (B) Approaches endurance limit (C) Approaches (yield point stress/factor of safety) (D) Approaches (endurance limit stress/factor of safety)

Last Answer : (A) Approaches yield point

Description : Line joining S yt (yield strength of the material) on mean stress axis and S e (endurance limit of the component) on stress amplitude axis is called as _____ a. Goodman line b. Soderberg line c. Gerber line d. None of the above

Last Answer : b. Soderberg line

Description : Failure of a material is termed as fatigue failure, if it fails below the yield point. The resistance to fatigue failure of a material is measured by the (A) Ultimate tensile strength (U.T.S.) (B) Endurance limit (C) Elastic limit (D) None of these

Last Answer : (B) Endurance limit

Description : Wohler test is a destructive test to find out the __________ strength of a prepared metal specimen. (A) Creep (B) Fatigue (C) Endurance (D) Tensile

Last Answer : (B) Fatigue

Description : Failure of a material is called fatigue when it fails (a) at the elastic limit (b) below the elastic limit (c) at the yield point (d) below the yield point

Last Answer : (d) below the yield point

Description : Slow plastic deformation of metals under a constant stress is termed as __________ failure. (A) Fatigue (B) Endurance (C) Creep (D) None of these

Last Answer : (C) Creep

Description : Under complex loading, if elastic limit reaches in tension, then failure occurs due to (a) Firstly Maximum principal strain theory (b) Secondly Maximum principal theory of strain energy (c) Thirdly Maximum Principal stress theory (d) None

Last Answer : (c) Thirdly Maximum Principal stress theory

Description : Under complex loading, if elastic limit reaches in tension, then failure occurs due to (a) Firstly Maximum principal strain theory (b) Secondly Maximum principal theory of strain energy (c) Thirdly Maximum shear stress theory (d) None

Last Answer : (d) None

Description : There is sufficient plastic deformation prior to fatigue failure, which gives a warning well in advance. a) True b) False

Last Answer : b) False

Description : What is the value of shear stress acting on a plane of circular bar which is subjected to axial tensile load of 100 kN? (Diamet a. 58.73 Mpa b. 40.23 Mpa c. 39.60 Mpa d. Insufficient data

Last Answer : c. 39.60 Mpa

Description : When a coupler nut is subjected to crushing stress, crushing failure can be avoided if _____ a. crushing stress induced is more than permissible crushing stress in the nut b. permissible crushing ... threads c. crushing stress induced is equal to permissible crushing stress d. all of the above

Last Answer : b. permissible crushing stress is more than crushing stress induced in the threads

Description : The dynamic load-carrying capacity of a bearing is defined as the radial load in radial bearings that can be carried for a minimum life of 1000 revolutions. (a) True (b) False

Last Answer : (b) False

Description : The dynamic load carrying capacity of a bearing is defined as the radial load in radial bearings that can be carried for a minimum life of 1000 revolutions. a) True b) False

Last Answer : b) False

Description : The ratio of endurance limit in shear to the endurance limit in flexure is (a) 0.25 (b) 0.40 (c) 0.55 (d) 0.70

Last Answer : (c) 0.55

Description : Shot blasting process improves the endurance limit of the component. a) True b) False

Last Answer : a) True

Description : Fatigue failure of a material may occur, when it is subjected to __________ stress. (A) Fluctuating (B) Tensile (C) Compressive (D) Torsion

Last Answer : (A) Fluctuating

Description : If the mean stress value for a sinusoidal stress function is zero, then this type of stress falls in which category? a) Fluctuating Stresses b) Alternating Stresses c) Repeated Stresses d) Reversed Stresses

Last Answer : d) Reversed Stresses

Description : The static load is defined as the load acting on the bearing when the shaft is _____. (a) stationary (b) rotating at rpm

Last Answer : (a) stationary

Description : Static load is defined as the load acting on the bearing when shaft is _____ a) Stationary b) Rotating at rpm

Last Answer : a) Stationary

Description : The yield point in static loading is ............... as compared to fatigue loading. (a) higher (b) lower (c) same

Last Answer : (a) higher

Description : In which of the following case stress concentration factor is ignored? a) Ductile material under static load b) Ductile material under fluctuating load c) Brittle material under static load

Last Answer : a) Ductile material under static load

Description : A transmission shaft subjected to pure bending moment should be designed on the basis of (A) Maximum principal stress theory (B) Maximum shear stress theory (C) Distortion energy theory (D) Goodman or Soderberg diagrams

Last Answer : (A) Maximum principal stress theory

Description : Fatigue resistance of a material is measured by the (A) Elastic limit (B) Ultimate tensile strength (C) Young's modulus (D) Endurance limit

Last Answer : (D) Endurance limit

Description : Propagation of fatigue failure is always due to compressive stresses. a) Due to bending b) Due to tensile c) Due to fatigue d) None of the listed

Last Answer : b) Due to tensile

Description : Fatigue failure is time dependent failure. a) True b) False

Last Answer : a) True

Description : The phenomenon of decreased resistance of the materials to fluctuating stresses is the main characteristic of _____ failure. a) Fracture b) Fatigue c) Yielding d) None of the mentioned

Last Answer : b) Fatigue

Description : The stress represented by cos (t) belongs to which category? a) Fluctuating Stresses b) Alternating Stresses c) Repeated Stresses d) Reversed Stresses

Last Answer : d) Reversed Stresses

Description : The stress represented by sin (t) + 4 belongs to which category? a) Alternating Stresses b) None of the mentioned c) Repeated Stresses d) Reversed Stresses

Last Answer : a) Alternating Stresses

Description : The stress represented by sin (t) + 2 belongs to which category? a) Fluctuating Stresses b) None of the mentioned c) Repeated Stresses d) Reversed Stresses

Last Answer : a) Fluctuating Stresses

Description : The stress represented by sin (t) + 1 belongs to which category? a) Fluctuating Stresses b) Alternating stresses c) Repeated Stresses d) Reversed Stresses

Last Answer : c) Repeated Stresses

Description : Fatigue limit improvement by over stressing the metal by successively increasing the load is called coaxing. In fatigue failure, the material fails (A) Below the yield point (B) Above the yield point (C) Below the elastic limit (D) At the elastic limit

Last Answer : Option A

Description : Calculate fatigue stress concentration factor, when theoretical stress concentration factor is 1.62 and notch sensitivity is equal to 0.9 a. 1.558 b. 3.358 c. 1.162 d. None of the above

Last Answer : a. 1.558

Description : Notch sensitivity (q) is given by the equation _______ where K f = fatigue stress concentration factor and K t = theoretical stress concentration factor a. ( K f + 1 ) / ( K t – 1 ) b. ( K f – 1 ) / ( K t – 1 ) c. ( K f + 1 ) / ( K t + 1 ) d. ( K f - 1 ) / ( K t + 1 )

Last Answer : b. ( K f – 1 ) / ( K t – 1 )

Description : Deformation that occurs due to stress over a period of time is known as ____________ a) Wear resistance b) Fatigue c) Creep d) Fracture

Last Answer : c) Creep