The yield point in static loading is ............... as compared to fatigue loading.

(a) higher (b) lower (c) same

1 Answer

Answer :

(a) higher

Related questions

Description : Factor of safety for fatigue loading is the ratio of (a) elastic limit to the working stress (b) Young's modulus to the ultimate tensile strength (c) endurance limit to the working stress (d) elastic limit to the yield point

Last Answer : (c) endurance limit to the working stress

Description : Failure of a material is called fatigue when it fails (a) at the elastic limit (b) below the elastic limit (c) at the yield point (d) below the yield point

Last Answer : (d) below the yield point

Description : When a material is subjected to fatigue loading, the ratio of the endurance limit to the ultimate tensile strength is (a) 0.20 (b) 0.35 (c) 0.50 (d) 0.65

Last Answer : (c) 0.50

Description : The relationship between the alternating stress and mean stress is given by the following equation: σ a =σ e [1-(σ m /σ u )x], where σ e is the fatigue limit for completely reversed loading. The value of x for Gerber line is equal to _________ a) 1 b) 2 c) 0.5 d) -1

Last Answer : b) 2

Description : The ability of materials to develop a characteristic behavior under repeated loading known as ___________ a) Toughness b) Resilience c) Hardness d) Fatigue

Last Answer : d) Fatigue

Description : The connecting rod bolts are tightened up with the initial tension greater than external load so that (A) Failure of bolt will be static (B) The resultant load on bolt will not be affected by ... ) The bolt will not fail by fatigue although the external load is fluctuating (D) All the three

Last Answer : (D) All the three

Description : The endurance or fatigue limit is defined as the maximum value of the stress which a polished standard specimen can withstand without failure, for infinite number of cycles, when subjected to (a) static load (b) dynamic load (c) static as well as dynamic load (d) completely reversed load

Last Answer : (d) completely reversed load

Description : Among maximum shear stress theory and distortion energy theory, which gives the higher value shear yield strength? a) Maximum shear stress theory b) Distortion energy theory c) Both give equal values d) Vary from material to material

Last Answer : b) Distortion energy theory

Description : Among maximum shear stress theory and distortion energy theory, which gives the higher value shear yield strength? a) Maximum shear stress theory b) Distortion energy theory c) Both give equal values d) Vary from material to material

Last Answer : b) Distortion energy theory

Description : In cold working of metal as compared to its hot working (A) Cracks and blow holes are eliminated (B) Ductility and impact strength improves (C) Appreciable strain hardening is produced (D) Yield stress, hardness and fatigue strength is not at all affected

Last Answer : (C) Appreciable strain hardening is produced

Description : Paraffin base crude oil as compared to asphalt base crude gives (A) Higher yield of straight run gasoline (B) Higher octane number gasoline (C) Lower viscosity index lube oil (D) Poorer yield of lube oil

Last Answer : (A) Higher yield of straight run gasoline

Description : Catalytic cracking compared to thermal cracking of residue of vacuum distillation of crude oil (A) Gives higher yield of petrol (B) Lower octane number of petrol (C) Higher sulphur content in the product (D) Higher gum forming material in petro

Last Answer : (A) Gives higher yield of petrol

Description : Cylindrical roller bearing has a lower load capacity as compared to deep groove ball bearing. (a) True (b) False

Last Answer : (b) False

Description : Cylindrical load bearing has lower load capacity as compared to deep groove ball bearing. a) True b) False

Last Answer : b) False

Description : The connecting rod bolts are tightened up so that the initial tightening stress (A) Approaches yield point (B) Approaches endurance limit (C) Approaches (yield point stress/factor of safety) (D) Approaches (endurance limit stress/factor of safety)

Last Answer : (A) Approaches yield point

Description : Manganese is added in low carbon steel to A. Make the steel tougher and harder B. Raise the yield point C. Make the steel ductile and of good bending qualities D. All of the above

Last Answer : C. Make the steel ductile and of good bending qualities

Description : _____ is a surface fatigue failure which occurs when the load on the bearing part exceeds the surface endurance strength of the material. (a) Scoring (b) Pitting (c) Corrosion

Last Answer : (b) Pitting

Description : Scoring is a ________ phenomenon. (a) stick-slip (b) fracture (c) fatigue (d) in-out

Last Answer : (a) stick-slip

Description : Extreme Pressure (EP) additives cause ______ wear in the bearing parts. (a) abrasive (b) corrosive (c) pitting (d) fatigue

Last Answer : (b) corrosive

Description : Scoring is a ________ phenomenon. a) Stick-slip b) Fracture c) Fatigue d) In-out

Last Answer : a) Stick-slip

Description : Propagation of fatigue failure is always due to compressive stresses. a) Due to bending b) Due to tensile c) Due to fatigue d) None of the listed

Last Answer : b) Due to tensile

Description : What will happen if stresses induced due to surge in the spring exceeds the endurance limit stress of the spring. a) Fatigue Failure b) Fracture c) None of the listed d) Nipping

Last Answer : a) Fatigue Failure

Description : The resistance to fatigue of a material is measured by (a) elastic limit (b) Young's modulus (c) ultimate tensile strength (d) endurance limit

Last Answer : (d) endurance limit

Description : Does ASME Standard take into consideration shock and fatigue factors? a) Yes b) No

Last Answer : a) Yes

Description : Does ASME Standard take into consideration shock and fatigue factors? a) Yes b) No

Last Answer : a) Yes

Description : Calculate fatigue stress concentration factor, when theoretical stress concentration factor is 1.62 and notch sensitivity is equal to 0.9 a. 1.558 b. 3.358 c. 1.162 d. None of the above

Last Answer : a. 1.558

Description : In S-N diagram, the graph plotted between fatigue strength and number of stress cycles becomes horizontal for which type of materials? a. Ferrous materials b. Non-ferrous materials c. Both a. and b. d. None of the above

Last Answer : a. Ferrous materials

Description : Notch sensitivity (q) is given by the equation _______ where K f = fatigue stress concentration factor and K t = theoretical stress concentration factor a. ( K f + 1 ) / ( K t – 1 ) b. ( K f – 1 ) / ( K t – 1 ) c. ( K f + 1 ) / ( K t + 1 ) d. ( K f - 1 ) / ( K t + 1 )

Last Answer : b. ( K f – 1 ) / ( K t – 1 )

Description : There is sufficient plastic deformation prior to fatigue failure, which gives a warning well in advance. a) True b) False

Last Answer : b) False

Description : Fatigue failure is time dependent failure. a) True b) False

Last Answer : a) True

Description : The phenomenon of decreased resistance of the materials to fluctuating stresses is the main characteristic of _____ failure. a) Fracture b) Fatigue c) Yielding d) None of the mentioned

Last Answer : b) Fatigue

Description : Deformation that occurs due to stress over a period of time is known as ____________ a) Wear resistance b) Fatigue c) Creep d) Fracture

Last Answer : c) Creep

Description : The notch sensitivity q is expressed in terms of fatigue stress concentration factor Kf and theoretical stress concentration factor Kt as (A) (Kf + 1)/ (Kt + 1) (B) (Kf - 1)/ (Kt - 1) (C) (Kt + 1)/ (Kf + 1) (D) (Kt - 1)/ (Kf - 1)

Last Answer : (B) (Kf - 1)/ (Kt - 1)

Description : The stress which vary from a minimum value to a maximum value of the same nature (i.e. tensile or compressive) is called (a) repeated stress (b) yield stress (c) fluctuating stress (d) alternating stress

Last Answer : (c) fluctuating stress

Description : Under complex loading, principal stresses exist as (a) Firstly σ 1 > σ 2 =σ 3 (b) Secondly σ 1 = σ 2 =σ 3 (c) Thirdly σ 1 > σ 2 < σ 3 (d) None

Last Answer : (d) None

Description : Under complex loading, theories of elastic failure establishes the (a) Margin of failure (b) Margin of safety (c) Both (a) & (b) (d) None

Last Answer : (b) Margin of safety

Description : Under complex loading, theories of elastic failures ensure (a) Stability (b) Instability (c) Both stability and instability (d) None

Last Answer : (a) Stability

Description : Under complex or simple loading, strain energy is (a) External work done (b) Internal work done (c) Both internal and external work (d) None

Last Answer : (b) Internal work done

Description : Under complex loading, if elastic limit reaches in tension, then failure occurs due to (a) Firstly Maximum principal strain theory (b) Secondly Maximum principal theory of strain energy (c) Thirdly Maximum Principal stress theory (d) None

Last Answer : (c) Thirdly Maximum Principal stress theory

Description : Under complex loading, if elastic limit reaches in tension, then failure occurs due to (a) Firstly Maximum principal strain theory (b) Secondly Maximum principal theory of strain energy (c) Thirdly Maximum shear stress theory (d) None

Last Answer : (d) None

Description : Failure of a material is termed as fatigue failure, if it fails below the yield point. The resistance to fatigue failure of a material is measured by the (A) Ultimate tensile strength (U.T.S.) (B) Endurance limit (C) Elastic limit (D) None of these

Last Answer : (B) Endurance limit

Description : Fatigue limit improvement by over stressing the metal by successively increasing the load is called coaxing. In fatigue failure, the material fails (A) Below the yield point (B) Above the yield point (C) Below the elastic limit (D) At the elastic limit

Last Answer : Option A

Description : Compared to fresh Water, the freezing point of sea water is - (1) Higher (2) Lower (3) Same (4) Depends on the sea from which the water is sourced

Last Answer : (2) Lower Explanation: Ocean water freezes just like freshwater, but at lower temperatures.

Description : The property of the bearing material to yield and adopt its shape to that of journal is called (A) Embeddability (B) Conformability (C) Viscosity (D) Endurance limit stress

Last Answer : (B) Conformability

Description : According to the ASME code, maximum allowable shear stress is taken as X% of yield strength or Y% of ultimate strength. a) X=30 Y=18 b) X=30 Y=30 c) X=18 Y=18 d) X=18 Y=30

Last Answer : a) X=30 Y=18

Description : According to the ASME code, maximum allowable shear stress is taken as X% of yield strength or Y% of ultimate strength. a) X=30 Y=18 b) X=30 Y=30 c) X=18 Y=18 d) X=18 Y=30

Last Answer : a) X=30 Y=18

Description : Line joining S yt (yield strength of the material) on mean stress axis and S e (endurance limit of the component) on stress amplitude axis is called as _____ a. Goodman line b. Soderberg line c. Gerber line d. None of the above

Last Answer : b. Soderberg line

Description : In a ductile material, the strength are (a)Firstly Ultimate >yield > elastic limit (b) Secondly Ultimate > yield =elastic limit (c) Thirdly Ultimate=yield=elastic limit (d) None

Last Answer : (a)Firstly Ultimate >yield > elastic limit

Description : In a brittle material, the strength are (a) Firstly Ultimate >yield > elastic limit (b) Secondly Ultimate > yield =elastic limit (c) Thirdly Ultimate=yield=elastic limit (d) None

Last Answer : (c) Thirdly Ultimate=yield=elastic limit

Description : Theories of elastic failure while dealing with brittle materials consider the failure criterion as (a) Ultimate stress (b) Yield stress (c) Both ultimate and yield stress (d) None

Last Answer : (a) Ultimate stress