Under complex or simple loading, strain energy is

(a) External work done

(b) Internal work done

(c) Both internal and external work

(d) None

1 Answer

Answer :

(b) Internal work done

Related questions

Description : Under complex loading, if elastic limit reaches in tension, then failure occurs due to (a) Firstly Maximum principal strain theory (b) Secondly Maximum principal theory of strain energy (c) Thirdly Maximum Principal stress theory (d) None

Last Answer : (c) Thirdly Maximum Principal stress theory

Description : Under complex loading, if elastic limit reaches in tension, then failure occurs due to (a) Firstly Maximum principal strain theory (b) Secondly Maximum principal theory of strain energy (c) Thirdly Maximum shear stress theory (d) None

Last Answer : (d) None

Description : Why do we determine principal stresses? a. Failure is due to simple stress or strain b. Failure is due to complex stress or strain c. Both (a) & (b) d. None

Last Answer : a. Failure is due to simple stress or strain

Description : Under complex loading, theories of elastic failure establishes the (a) Margin of failure (b) Margin of safety (c) Both (a) & (b) (d) None

Last Answer : (b) Margin of safety

Description : Under complex loading, theories of elastic failures ensure (a) Stability (b) Instability (c) Both stability and instability (d) None

Last Answer : (a) Stability

Description : Under complex loading, principal stresses exist as (a) Firstly σ 1 > σ 2 =σ 3 (b) Secondly σ 1 = σ 2 =σ 3 (c) Thirdly σ 1 > σ 2 < σ 3 (d) None

Last Answer : (d) None

Description : For a homogeneous & isotropic body under hydrostatic pressure, which theory of elastic failure fails (a) Firstly Maximum Principal Theory (b) Secondly Maximum Principal strain Theory (c) Thirdly Maximum Principal Energy Theory (d) None

Last Answer : (c) Thirdly Maximum Principal Energy Theory

Description : Shear strain energy under principal tensile stresses σ1 and σ2 is (a) (1/12E) (σ1 — σ2) 2 + σ2 2 — σ1 2 ) (b) (1/12G) (σ1 — σ2) 2 + σ2 2 + σ1 2 ) (c) (1/12K) (σ1 — σ2) 2 + σ2 2 + σ1 2 ) (d) None

Last Answer : (b) (1/12G) (σ1 — σ2) 2 + σ2 2 + σ1 2 )

Description : A ductile material may not meet a failure if it has been tested for the theories of failure (a) Firstly Maximum Shear Stress Theory (b) Secondly Maximum Shear Strain Energy Theory (c) Both (a) & (b) (d) None

Last Answer : (c) Both (a) & (b)

Description : Is principal a? a. Simple stress b. Complex stress c. Bending stress d. None

Last Answer : a. Simple stress

Description : The ability of materials to develop a characteristic behavior under repeated loading known as ___________ a) Toughness b) Resilience c) Hardness d) Fatigue

Last Answer : d) Fatigue

Description : The largest diameter of external or internal screw thread is called (A) Major diameter (B) Minor diameter (C) Pitch diameter (D) None of the above

Last Answer : (A) Major diameter

Description : Modulus of resilience is defined as a) Strain energy per unit volume b) Strain energy per unit area c) Independent of strain energy d) None of the mentioned

Last Answer : a) Strain energy per unit volume

Description : The strain energy (E) stored in the spring is given by Where P=Load and δ = deflection of spring (A) Pδ/2 (B) 2Pδ (C) Pδ/3 (D) Pδ/4

Last Answer : (A) Pδ/2

Description : The strain energy stored in a spiral spring is given by? a) 12M2L/Ebtɜ b) 6M2L/Ebtɜ c) 8M2L/Ebtɜ d) None of the listed

Last Answer : b) 6M2L/Ebtɜ

Description : If the length of the shank is doubled, then strain energy absorbed by shank a) Doubles b) Remains same c) Increases 4 time d) Become half

Last Answer : a) Doubles

Description : A ductile material may not meet a failure if it has been tested for the theories of failure (a) Firstly Maximum Principal Theory (b) Secondly Maximum Principal Strain Theory (c) Thirdly Maximum principal strain energy theory (d) None

Last Answer : (d) None

Description : Maximum total strain energy theory is applicable to (a) Ductile materials (b) Brittle materials (c) Composite materials (d) None

Last Answer : (a) Ductile materials

Description : Shear strain energy theory is also known as (a) Coulomb’s theory (b) Distortion energy theory (c) Rankine theory (d) None

Last Answer : (b) Distortion energy theory

Description : Shear strain energy theory is also known as (a) Von Mises Theory (b) Coulomb’s theory (c) Rankine theory (d) None

Last Answer : (a) Von Mises Theory

Description : Shear strain energy theory is also known as ( a) Huber theory (b) Rankine theory (c) Mises-Hencky theory (d) None

Last Answer : (c) Mises-Hencky theory

Description : Maximum total strain energy theory is applicable to (a) Ductile materials (b) Brittle materials (c) Composite materials (d) None

Last Answer : (b) Brittle materials

Description : Maximum total strain energy is equal to (a) (σ1 2 +σ2 2 )/2E (b) ( σ1 2 +σ2 2 + 2μ σ1 σ2)/2E (c) ( σ1 2 +σ2 2 — 2μ σ1 σ2)/2E (d) None

Last Answer : (c) ( σ1 2 +σ2 2 — 2μ σ1 σ2)/2E

Description : Maximum total strain energy theory is also known as (a) Huber theory (b) Rankine theory (c) St.Venant’s theory (d) None

Last Answer : (a) Huber theory

Description : Maximum total strain energy theory is also known as (a) Guest’s theory (b) Haigh theory (c) St.Venant’s theory (d) None

Last Answer : (b) Haigh theory

Description : The total strain energy for a unit cube subjected to three principal stresses is given by? a) U= [(σέ) 1 + (σέ) 2+ (σέ) 3]/3 b) U= [(σ12+σ22+σ32)/2E] – (σ1σ2+σ2σ3+σ3σ1)2μ c) U= [(σέ) 1 + (σέ) 2+ (σέ) 3]/4 d) None of the mentioned

Last Answer : b) U= [(σ12+σ22+σ32)/2E] – (σ1σ2+σ2σ3+σ3σ1)2μ

Description : The activities that make up the project are not simple, repetitive  acts, such as mowing the lawn, painting the house, washing the car, or loading the delivery truck. a. They are complex b. They are simple c. Different d. Same

Last Answer : a. They are complex

Description : When a material is subjected to fatigue loading, the ratio of the endurance limit to the ultimate tensile strength is (a) 0.20 (b) 0.35 (c) 0.50 (d) 0.65

Last Answer : (c) 0.50

Description : Factor of safety for fatigue loading is the ratio of (a) elastic limit to the working stress (b) Young's modulus to the ultimate tensile strength (c) endurance limit to the working stress (d) elastic limit to the yield point

Last Answer : (c) endurance limit to the working stress

Description : The yield point in static loading is ............... as compared to fatigue loading. (a) higher (b) lower (c) same

Last Answer : (a) higher

Description : The relationship between the alternating stress and mean stress is given by the following equation: σ a =σ e [1-(σ m /σ u )x], where σ e is the fatigue limit for completely reversed loading. The value of x for Gerber line is equal to _________ a) 1 b) 2 c) 0.5 d) -1

Last Answer : b) 2

Description : How many angles of obliquity are there for a cuboidal body under complex stresses? a. 6 b. 8 c. 4 d. None

Last Answer : a. 6

Description : Maximum principal strain is equal to when σ1 and σ2 are tensile (a) (σ1 –μσ2)/E (b) (σ1 + μσ2)/E (c) (–σ1 –μσ2)/E (d) None

Last Answer : (a) (σ1 –μσ2)/E

Description : Maximum principal strain theory is also called as (a) Guest’s theory (b) Haigh theory (c) St.Venant’s theory (d) None

Last Answer : (c) St.Venant’s theory

Description : Maximum principal strain theory is applicable to (a) Ductile materials (b) Brittle materials (c) Composite materials (d) None

Last Answer : (b) Brittle materials

Description : In Mohr’s circle of strain, y-axis represents a. Shear strain b. Half of shear strain c. Normal strain d. Half of normal strain

Last Answer : b. Half of shear strain

Description : The principal strain due to σ1(tensile) and σ2 (Compressive ) stress is (a) Firstly (b)Secondly (c)Thirdly (d) None

Last Answer : (b)Secondly

Description : The elastic stress strain behavior of rubber is A. Linear B. Nonlinear C. Plastic D. No fixed relationship

Last Answer : B. Nonlinear

Description : For elasto-hydrodynamic lubrication (A) There should be relative motion between the surfaces of the journal and the bearing and wedge shaped clearance space (B) There should be external source like ... be elastic deformation of the parts in contact (D) There should be metal to metal contact

Last Answer : (C) There should be elastic deformation of the parts in contact

Description : For hydrostatic lubrication (A) There should be relative motion between the surfaces of the journal and the bearing and wedge shaped clearance space (B) There should be external source like pump to ... be elastic deformation of the parts in contact (D) There should be metal to metal contact

Last Answer : (B) There should be external source like pump to supply lubricant under pressure

Description : For hydrodynamic lubrication (A) There should be relative motion between the surfaces of the journal and the bearing and wedge shaped clearance space (B) There should be external source like pump to ... be elastic deformation of the parts in contact (D) There should be metal to metal contact

Last Answer : (A) There should be relative motion between the surfaces of the journal and the bearing and wedge shaped clearance space

Description : In hydrostatic bearings (A) The Oil film pressure is generated only by the rotation of the journal (B) The oil film is maintained by supplying oil under pressure (C) Do not require external supply of lubricant (D) Grease is used for lubrication

Last Answer : (B) The oil film is maintained by supplying oil under pressure

Description : Strain is defined as :** A. An external force B. An internal force to oppose external load C. Deformity opposed the applied load

Last Answer : C. Deformity opposed the applied load

Description : The sum of energies of all the molecules in a system, energies that appear in several complex forms.  a. External Energy  b. Internal Energy  c. Kinetic Energy  d. None of the above

Last Answer : Internal Energy

Description : In compression springs, the external force tends to (A) shorten the spring (B) lengthen the spring (C) both (A) and (C) (D) keep the length same

Last Answer : (A) shorten the spring

Description : The coefficient of fluctuation of energy of flywheel is 1. ratio of maximum fluctuation of energy to work done per cycle 2. ratio of to work done per cycle to maximum fluctuation of energy ... minimum kinetic energy during the cycle 4. ratio of maximum and minimum kinetic energy during the cycle

Last Answer : 1. ratio of maximum fluctuation of energy to work done per cycle

Description : The coefficient of fluctuation of energy = (A) Maximum fluctuation of energy / work done per cycle (B) Fluctuation of energy / Work done per cycle (C) Maximum fluctuation of energy / Mean speed (D) Fluctuation of energy / Mean speed

Last Answer : (A) Maximum fluctuation of energy / work done per cycle

Description : The coefficient of fluctuation of energy of flywheel is, (A) Ratio of maximum fluctuation of energy to work done per cycle (B) Ratio of to work done per cycle to maximum fluctuation of ... minimum kinetic energy during the cycle (D) Ratio of maximum and minimum kinetic energy during the cycle

Last Answer : (A) Ratio of maximum fluctuation of energy to work done per cycle

Description : Which of the following is not true for cast iron flywheels? a) Excellent damping b) Cheap c) Given complex shape d) Sudden failure

Last Answer : d) Sudden failure

Description : The magnitude of principal stresses due to complex stresses is (a) (1/2)[ (σ x + σ y ) ± ((σ x –σ y ) 2 + 4 τ 2 )) 0.5 ] (b) (1/2)[ (σx + σy) ± (1/2)((σx –σy) 2 + 4 τ 2 )) 0.5 ] (c) (1/2)[ (σx + σy) ± ((1/2)(σx –σy) 2 + 4 τ 2 )) 0.5 ]

Last Answer : (a) (1/2)[ (σ x + σ y ) ± ((σ x –σ y ) 2 + 4 τ 2 )) 0.5 ]