If `Delta H gt 0` and `Delta S gt 0`, the reaction proceeds spontaneously when :-

1 Answer

Answer :

If `Delta H gt 0` and `Delta S gt 0`, the reaction proceeds spontaneously when :- A. `Delta H gt 0` B. ... Delta S` C. `Delta H = T Delta S` D. None

Related questions

Description : If `Delta G^(@)gt 0` for a reaction then :

Last Answer : If `Delta G^(@)gt 0` for a reaction then : A. `K_(P) gt 1` B. `K_(P) lt 1` C. The products predominate in the equilibrium mixture D. None

Description : In the reaction M g C I 2 plus 2 KO H - and gt MG OH 2 plus 2 K CI if 1 mole Mg CI 2 is added to 3 moles KO H what is the limiting reagent?

Last Answer : Feel Free to Answer

Description : According to the following reaction `C(S)+1//2O_(2)(g)rarr CO(g), Delta H=-26.4` Kcal

Last Answer : According to the following reaction `C(S)+1//2O_(2)(g)rarr CO(g), Delta H=-26.4` Kcal ... compound C. The reaction is endothermic D. None of the above

Description : For the reaction `Ag_(2)O(s)rarr 2Ag(s)+1//2O_(2)(g)` the value of `Delta H=30.56 KJ mol^(_1)` and `Delta S = 66 JK^(-1)mol^(-1)`. The temperature at

Last Answer : For the reaction `Ag_(2)O(s)rarr 2Ag(s)+1//2O_(2)(g)` the value of `Delta H=30.56 KJ mol^(_1)` and `Delta ... :- A. 373 K B. 413 K C. 463 K D. 493 K

Description : The temperature at which the reaction : `Ag_(2)O(s)rarr 2Ag(s)+1//2O_(2)(g)` is at equilibrium is …….., Given `Delta H=30.5 KJ mol^(-1)` and `Delta S

Last Answer : The temperature at which the reaction : `Ag_(2)O(s)rarr 2Ag(s)+1//2O_(2)(g)` is at equilibrium is .., ... 362.12 K` C. `262.12 K` D. `562.12 K`

Description : Assertion :- At constant temp `0^(@)C` and 1 atm, the change `H_(2)O(s)rarr H_(2)O(l)Delta H` and `Delta E` both are zero. Reason :- During isothermal

Last Answer : Assertion :- At constant temp `0^(@)C` and 1 atm, the change `H_(2)O(s)rarr H_(2)O(l) ... Reason is False. D. If both Assertion & Reason are false.

Description : If, `H_(2)(g)+Cl_(2)(g)rarr 2HCl(g) , Delta H^(@)=-44` Kcal `2Na(s)+2HCl(g)rarr 2NaCl(s)+H_(2)(g), Delta H=-152` Kcal Then, `Na(s)+0.5Cl_(2)(g)rarr Na

Last Answer : If, `H_(2)(g)+Cl_(2)(g)rarr 2HCl(g) , Delta H^(@)=-44` Kcal `2Na(s)+2HCl(g)rarr 2NaCl(s)+H_(2)( ... ` A. 108 Kcal B. 196 Kcal C. `-98` Kcal D. 54 Kcal

Description : Using the following thermochemical data. `C(S)+O_(2)(g)rarr CO_(2)(g), Delta H=94.0` Kcal `H_(2)(g)+1//2O_(2)(g)rarr H_(2)O(l), Delta H=-68.0` Kcal `C

Last Answer : Using the following thermochemical data. `C(S)+O_(2)(g)rarr CO_(2)(g), Delta H=94.0` Kcal `H_(2)(g)+1// ... .0` Kcal C. `-114.0` Kcal D. `+114.0` Kcal

Description : `C(s)+O_(2)(g)rarr CO_(2)(g)+94.0` K cal. `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g), Delta H=-67.7` K cal. From the above reactions find how much heat (Kca

Last Answer : `C(s)+O_(2)(g)rarr CO_(2)(g)+94.0` K cal. `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g), Delta H=-67.7` K cal. ... g)` A. `20.6` B. `26.3` C. `44.2` D. `161.6`

Description : Givecn that : `Zn+1//2O_(2)rarr ZnO+84000` cal ……………1 `Hg+1//2O_(2)rarr HgO+21700` cal …………2 The heat of reaction `(Delta H)` for, `Zn+HgO rarr ZnO+Hg

Last Answer : Givecn that : `Zn+1//2O_(2)rarr ZnO+84000` cal 1 `Hg+1//2O_(2)rarr HgO+21700` cal 2 ... cal B. 62300 cal C. `-105700` cal D. `-62300` cal

Description : `Delta H` for the reaction, `I_((g))+I_((g))rarr I_(2(g))` will be :-

Last Answer : `Delta H` for the reaction, `I_((g))+I_((g))rarr I_(2(g))` will be :- A. Zero B. `-ve` C. `+ve` D. `oo`

Description : From the reaction P(White) `rarr` P(Red) `Delta H =-18.4KJ`, it follows that :-

Last Answer : From the reaction P(White) `rarr` P(Red) `Delta H =-18.4KJ`, it follows that :- A. Red P is ... P can be converted into red P and red P is more stable

Description : The Gibbs free energy change of a reaction at `27^(@)C` is -26 Kcal. and its entropy change is -60 Cals/K. `Delta H` for the reaction is :-

Last Answer : The Gibbs free energy change of a reaction at `27^(@)C` is -26 Kcal. and its entropy change is -60 Cals/K. ... Cals. C. 34 K. Cals. D. `-24` K. Cals.

Description : The enthalpy change `(Delta H)` for the reaction `N_(2) (g)+3H_(2)(g) rarr 2NH_(3)(g)` is `-92.38 kJ` at `298 K`. What is `Delta U` at `298 K`?

Last Answer : The enthalpy change `(Delta H)` for the reaction `N_(2) (g)+3H_(2)(g) rarr 2NH_(3)(g)` is `-92.38 kJ` at ` ... -87.42 kJ` C. `-97.34 kJ` D. `-89.9 kJ`

Description : How can you determine the reaction, taking place at constant pressure delta (H) ?

Last Answer : The difference of Enthalpy’s of products and reactants H=Hp-Hr

Description : The enthalpy change for a given reaction at `298 K` is `-x cal mol^(-1)`. If the reaction occurs spontaneously at `298 K`, the entropy change at that

Last Answer : The enthalpy change for a given reaction at `298 K` is `-x cal mol^(-1)`. If the reaction occurs ... (-1)` C. Cannot be negative D. Cannot be positive

Description : What chemical reaction is toxic hydrogen peroxide will spontaneously break down into water and oxygen?

Last Answer : The chemical reaction is:2 H2O2 = 2 H2O + O2

Description : A chemical reaction will occur spontaneously at constant pressure and temperature, if the free energy is (A) Zero (B) Positive (C) Negative (D) None of these

Last Answer : (C) Negative

Description : At a certain temperature T, the endothermic reaction `A rarr B` proceeds almost to completion.The entropy change is :

Last Answer : At a certain temperature T, the endothermic reaction `A rarr B` proceeds almost to completion.The entropy ... `Delta S gt 0` D. Cannot be predicted

Description : The only CORRECT combination in which the reaction proceeds through radical mechanism is

Last Answer : The only CORRECT combination in which the reaction proceeds through radical mechanism is A. (IV)(i)(Q) B. (III)(ii)(P) C. (II)(iii)(R) D. (I)(ii)(R)

Description : In case of __________ reactions, the reaction rate does not decrease appreciably as the reaction proceeds. (A) Catalytic (B) Parallel (C) Series (D) Auto catalytic

Last Answer : (D) Auto catalytic

Description : As the chemical reaction proceeds, the rate of reaction (A) Increases (B) Decreases (C) Remain same (D) May increase or decrease depending on the type of reaction

Last Answer : (B) Decreases

Description : The rate of reaction does not decrease appreciably as the reaction proceeds in case of __________ reactions. (A) Autocatalytic (B) Exothermic (C) Endothermic (D) Autothermal

Last Answer : (A) Autocatalytic

Description : Pick out the wrong statement. (A) In a first order reaction, A → products; the reaction becomes slower as it proceeds, because the concentration of A decreases and the rate is proportional to the concentration ... irreversible reaction, A + B → 2C is k.CA .CB , then the reaction is always elementary

Last Answer : (C) According to the penetration theory, the mass transfer co-efficient decreases, if the exposure time of an eddy to the solute decreases

Description : Pick out the wrong statement. (A) For a first order consecutive reaction, a tubular flow reactor as compared to a stirred tank reactor provides higher overall selectivity(B) For an ideal ... D) Reaction rate does not decrease appreciably as the reaction proceeds in case of an autocatalytic reaction

Last Answer : (A) For a first order consecutive reaction, a tubular flow reactor as compared to a stirred tank reactor provides higher overall selectivity

Description : In the method of condensation polymerization, (A) Low-molecular substances are removed from the high molecular substance (B) The reaction proceeds with an evolution of ammonia (C) The reaction proceeds with an evolution of hydrogen chloride (D) All of the above

Last Answer : Answer: Option D

Description : Given that - `2C(s)+2O_(2)(g)rarr 2CO_(2)(g) Delta H = -787 KJ` `H_(2)(g)+ 1//2O_(2)(g)rarr H_(2)O(l) Delta =-286 KJ` `C_(2)H_(2)(g)+(5)/(2)O_(2)(g)ra

Last Answer : Given that - `2C(s)+2O_(2)(g)rarr 2CO_(2)(g) Delta H = -787 KJ` `H_(2)(g)+ 1//2O_(2)(g)rarr H_(2) ... 1802` KJ B. `-1802` KJ C. `-800` KJ D. `+237` KJ

Description : For `CaCO_(3)(s)rarr CaO(s)+CO_(2)(g)` at `977^(@)C, Delta H = 174` KJ/mol , then `Delta E` is :-

Last Answer : For `CaCO_(3)(s)rarr CaO(s)+CO_(2)(g)` at `977^(@)C, Delta H = 174` KJ/mol , then `Delta E` is :- A. 160 KJ B. 163.6 KJ C. 186.4 KJ D. 180 KJ

Description : What of the following reactions demonstrates a synthesis reaction A) Mg plus H2SO4 and gt MgSO4 plus H2 B) 2NaCl and gt 2Na plus Cl2 C) C plus O2 and gt CO2 D) Zn plus 2HCl and gt ZnCl2 plus H2?

Last Answer : C+O2 →CO2

Description : 4 kg moles of an ideal gas expands in vacuum spontaneously. The work done is (A) 4 J (B) ∞ (C) 0 (D) 8 J

Last Answer : (C) 0

Description : Calculate the entropy of `Br_(2)(g)` in the reaction `H_(2)(g)+Br_(2)(g)rarr2HBr(g), Delta S^(@)=20.1 JK^(-1)` given, entropy of `H_(2)` and HBr is 13

Last Answer : Calculate the entropy of `Br_(2)(g)` in the reaction `H_(2)(g)+Br_(2)(g)rarr2HBr(g), Delta S^(@)=20.1 JK^(-1 ... ` C. `24.63 JK^(-1)` D. `20 KJK^(-1)`

Description : In which reaction `Delta S` is positive :-

Last Answer : In which reaction `Delta S` is positive :- A. `H_(2)O(l)rarr H_(2)O(s)` B. `3O_(2)(g)rarr 2O_(3)(g)` C. ... g)` D. `N_(2)(g)+3H_(2)(g)rarr 2NH_(3)(g)`

Description : `Delta S` for the reaction , `MgCO_(3)(s)rarr MgO(s)+CO_(2)(g)` will be :

Last Answer : `Delta S` for the reaction , `MgCO_(3)(s)rarr MgO(s)+CO_(2)(g)` will be :

Description : From the thermochemical reactions, C(graphite)`+1//2O_(2)rarr CO , Delta H = -110.5` KJ `CO+1//2O_(2)rarr CO_(2),Delta H=-283.2` KJ the heat of reacti

Last Answer : From the thermochemical reactions, C(graphite)`+1//2O_(2)rarr CO , Delta H = -110.5` KJ `CO+1//2O_(2)rarr CO_( ... 7` KJ C. `-172.7` KJ D. `+172.7` KJ

Description : `Cl_(2)(g)rarr2Cl(g)`, In this process value of `Delta H` will be -

Last Answer : `Cl_(2)(g)rarr2Cl(g)`, In this process value of `Delta H` will be - A. Positive B. Negative C. Zero D. Nothing can be predicted

Description : Given that standard heat enthalpy of `CH_(4), C_(2)H_(4)` and `C_(3)H_(8)` are -17.9, 12.5, -24.8 Kcal/mol. The `Delta H` for `CH_(4)+C_(2)Hrarr C_(3)

Last Answer : Given that standard heat enthalpy of `CH_(4), C_(2)H_(4)` and `C_(3)H_(8)` are -17.9, 12.5, -24.8 Kcal ... . `-30.2` Kcal C. 55.2 Kcal D. `-19.4` Kcal

Description : Which of the following reactions is `Delta H` less than `Delta E` ?

Last Answer : Which of the following reactions is `Delta H` less than `Delta E` ? A. `C_(12)H_(22)O_(11)(s)+6O_(2)(g)rarr ... g)` D. `N_(2)(g)+O_(2)(g)rarr 2NO(g)`

Description : The difference in `Delta H` and `Delta E` for the combustion of methane at `25^(@)C` would be :-

Last Answer : The difference in `Delta H` and `Delta E` for the combustion of methane at `25^(@)C` would be :- A ... Cals C. `2xx298xx -3` Cals D. `2xx25xx -3` Cals

Description : For which change `Delta H ne Delta E` :-

Last Answer : For which change `Delta H ne Delta E` :- A. `H_(2)(g)+I_(2)(g)hArr 2HI(g)` B. `HCl(l)+NaOH(l)rarr NaCl( ... (g)` D. `N_(2)(g)+3H_(2)(g)rarr2NH_(3)(g)`

Description : Under which of the following conditions is the relation, `Delta H = Delta E + P Delta V` valid for a system :-

Last Answer : Under which of the following conditions is the relation, `Delta H = Delta E + P ... and pressure D. Constant temperature, pressure and composition

Description : The difference in `Delta H` and `Delta E` for the combustion of methane at `25^(@)C` would be :-

Last Answer : The difference in `Delta H` and `Delta E` for the combustion of methane at `25^(@)C` would be :- A ... cals C. `2xx298xx -3` cals D. `2xx25xx -3` cals

Description : For the reversible isothermal expansion of one mole of an ideal gas at 300 K, from a volume of `10 dm^(3)` to `20 dm^(3), Delta H` is -

Last Answer : For the reversible isothermal expansion of one mole of an ideal gas at 300 K, from a volume of `10 dm^(3)` to ` ... . `-1.73 KJ` C. `3.46 KJ` D. Zero

Description : For a reversible process at T = 300K, the volume is increased from `V_(i)=1L` to `V_(f)=10L`. Calculate `Delta H` if the process is isothermal -

Last Answer : For a reversible process at T = 300K, the volume is increased from `V_(i)=1L` to `V_(f)=10L`. Calculate `Delta H ... kJ B. 4.98 kJ C. 0 D. `-11.47 kJ`

Description : `Ph-CH=CH-underset(O)underset(C)-H overset((i) CH_(3)CH_(2)MgBr)to overset((ii) H_(3)O^(o+))to(X) overset(Cu,Delta)to(Y)`

Last Answer : `Ph-CH=CH-underset(O)underset(C)-H overset((i) CH_(3)CH_(2)MgBr)to overset((ii) H_(3)O^(o+))to(X) ... -underset(O)underset(||)(C)-CH=CH-CH_(2)-CH_(3)`

Description : `Ph-CH=CH-underset(O)underset(C)-H overset((i) CH_(3)CH_(2)MgBr)to overset((ii) H_(3)O^(o+))to(X) overset(Cu,Delta)to(Y)`

Last Answer : `Ph-CH=CH-underset(O)underset(C)-H overset((i) CH_(3)CH_(2)MgBr)to overset((ii) H_(3)O^(o+))to(X) ... -underset(O)underset(||)(C)-CH=CH-CH_(2)-CH_(3)`

Description : (4) Liquid Hydrogen + Liquid Oxygen Explanation: LOX and liquid hydrogen, used in the Space Shuttle orbiter, the Centaur upper stage of the Atlas V, Saturn V upper stages, the ... to withstand high combustion pressures and temperatures and they can be regeneratively cooled by the liquid propellant.

Last Answer : The BOD values of water indicate the (1) amount of organic debris (2) amount of oxygen used for biochemical oxidation (3) amount of oxygen used for biochemical reduction (4) amount of ozone used for biochemical oxidation

Description : Can paper towels soaked in canola oil spontaneously combust?

Last Answer : First of all, canola oil has a fairly high smoke point, 400 degrees F. And canola oil is not volatile; the oil doesn't give off a lot of gasses at normal atmospheric temperatures. As a ... because anything in the trash might catch an errant flame/lit grease splatter and cause the trash to light.

Description : What is the reason for losing ability to respond spontaneously?

Last Answer : I will think about this and get back to you later.

Description : Why does the etheric body awaken spontaneously suddenly?

Last Answer : answer:As one evolves their consciousness, they become aware of spiritual dimensions never known before. While this new experience attracts one's attention, it is as important as noting a mile marker ... 's self will create eddies in this energy that becomes a source for suffering from illusions.

Description : Do you feel smartphones make it more difficult to "mix" or spontaneously interact with semi-strangers in semi-public places?

Last Answer : I don’t think they make it more difficult to mix, but I do think they make it easier, by providing an “out,” not to mix.