How can you determine the reaction, taking place at constant pressure delta (H) ?

1 Answer

Answer :

 The difference of Enthalpy’s of products and reactants H=Hp-Hr  

Related questions

Description : Assertion :- At constant temp `0^(@)C` and 1 atm, the change `H_(2)O(s)rarr H_(2)O(l)Delta H` and `Delta E` both are zero. Reason :- During isothermal

Last Answer : Assertion :- At constant temp `0^(@)C` and 1 atm, the change `H_(2)O(s)rarr H_(2)O(l) ... Reason is False. D. If both Assertion & Reason are false.

Description : From the steam table, determine the average constant pressure specific heat (c) of steam at 10 kPa and45.8 ˚C  A.1.79 kJ/ kg-˚C  B.10.28 kJ/ kg-˚C  C.30.57 kJ/ kg-˚C  D. 100.1 kJ/ kg-˚C Formula: h = c T ∆ ∆ From the steam table At 47.7 ˚C h= 2588.1 kJ/ kg At 43.8 ˚C h= 2581.1 kJ/ kg

Last Answer : 1.79 kJ/ kg-˚C

Description : Givecn that : `Zn+1//2O_(2)rarr ZnO+84000` cal ……………1 `Hg+1//2O_(2)rarr HgO+21700` cal …………2 The heat of reaction `(Delta H)` for, `Zn+HgO rarr ZnO+Hg

Last Answer : Givecn that : `Zn+1//2O_(2)rarr ZnO+84000` cal 1 `Hg+1//2O_(2)rarr HgO+21700` cal 2 ... cal B. 62300 cal C. `-105700` cal D. `-62300` cal

Description : `Delta H` for the reaction, `I_((g))+I_((g))rarr I_(2(g))` will be :-

Last Answer : `Delta H` for the reaction, `I_((g))+I_((g))rarr I_(2(g))` will be :- A. Zero B. `-ve` C. `+ve` D. `oo`

Description : From the reaction P(White) `rarr` P(Red) `Delta H =-18.4KJ`, it follows that :-

Last Answer : From the reaction P(White) `rarr` P(Red) `Delta H =-18.4KJ`, it follows that :- A. Red P is ... P can be converted into red P and red P is more stable

Description : According to the following reaction `C(S)+1//2O_(2)(g)rarr CO(g), Delta H=-26.4` Kcal

Last Answer : According to the following reaction `C(S)+1//2O_(2)(g)rarr CO(g), Delta H=-26.4` Kcal ... compound C. The reaction is endothermic D. None of the above

Description : The Gibbs free energy change of a reaction at `27^(@)C` is -26 Kcal. and its entropy change is -60 Cals/K. `Delta H` for the reaction is :-

Last Answer : The Gibbs free energy change of a reaction at `27^(@)C` is -26 Kcal. and its entropy change is -60 Cals/K. ... Cals. C. 34 K. Cals. D. `-24` K. Cals.

Description : For the reaction `Ag_(2)O(s)rarr 2Ag(s)+1//2O_(2)(g)` the value of `Delta H=30.56 KJ mol^(_1)` and `Delta S = 66 JK^(-1)mol^(-1)`. The temperature at

Last Answer : For the reaction `Ag_(2)O(s)rarr 2Ag(s)+1//2O_(2)(g)` the value of `Delta H=30.56 KJ mol^(_1)` and `Delta ... :- A. 373 K B. 413 K C. 463 K D. 493 K

Description : The temperature at which the reaction : `Ag_(2)O(s)rarr 2Ag(s)+1//2O_(2)(g)` is at equilibrium is …….., Given `Delta H=30.5 KJ mol^(-1)` and `Delta S

Last Answer : The temperature at which the reaction : `Ag_(2)O(s)rarr 2Ag(s)+1//2O_(2)(g)` is at equilibrium is .., ... 362.12 K` C. `262.12 K` D. `562.12 K`

Description : If `Delta H gt 0` and `Delta S gt 0`, the reaction proceeds spontaneously when :-

Last Answer : If `Delta H gt 0` and `Delta S gt 0`, the reaction proceeds spontaneously when :- A. `Delta H gt 0` B. ... Delta S` C. `Delta H = T Delta S` D. None

Description : The enthalpy change `(Delta H)` for the reaction `N_(2) (g)+3H_(2)(g) rarr 2NH_(3)(g)` is `-92.38 kJ` at `298 K`. What is `Delta U` at `298 K`?

Last Answer : The enthalpy change `(Delta H)` for the reaction `N_(2) (g)+3H_(2)(g) rarr 2NH_(3)(g)` is `-92.38 kJ` at ` ... -87.42 kJ` C. `-97.34 kJ` D. `-89.9 kJ`

Description : Constant segment genes of heavy chains are present in a cluster in which the first gene on side is (A) Alpha (B) Gamma (C) Delta (D) None of these

Last Answer : Answer : D

Description : The work done by a weightless piston in causing an expansing `Delta V` (at constant temperature), when the opposing pressure P is variable, is given b

Last Answer : The work done by a weightless piston in causing an expansing `Delta V` (at constant temperature), when the opposing ... 0 C. `W = -P Delta V` D. None

Description : A place where there is constant intermingling of salt water and fresh water is ______. (1) Estuary (2) Delta (3) Gulf (4) Bay

Last Answer : (1) Estuary Explanation: Estuaries form a transition zone between river environments and ocean environments and are subject to both marine influences, such as tides, waves, and the influx of ... water column and sediment, making estuaries among the most productive natural habitats in the world.

Description : A place where there is constant intermingling of salt water and fresh water is ____ (1) Estuary (2) Delta (3) Gulf (4) Bay 

Last Answer : Estuary

Description : What is the relation between reaction taking place in one of the several stages and the total amount of energy liberated in the reaction ?

Last Answer : The relation between reaction taking place in one of the several stages and the total amount of energy liberated in the reaction is same.

Description : Which of the following procedures should be used to determine the load of a threephase, delta wound, AC generator? A. Multiply the amperage in one phase by three. B. Divide the total amperage in all ... square root of three. D. Divide the total amperage in all phases by the square root of three.

Last Answer : Answer: C

Description : If, `H_(2)(g)+Cl_(2)(g)rarr 2HCl(g) , Delta H^(@)=-44` Kcal `2Na(s)+2HCl(g)rarr 2NaCl(s)+H_(2)(g), Delta H=-152` Kcal Then, `Na(s)+0.5Cl_(2)(g)rarr Na

Last Answer : If, `H_(2)(g)+Cl_(2)(g)rarr 2HCl(g) , Delta H^(@)=-44` Kcal `2Na(s)+2HCl(g)rarr 2NaCl(s)+H_(2)( ... ` A. 108 Kcal B. 196 Kcal C. `-98` Kcal D. 54 Kcal

Description : From the thermochemical reactions, C(graphite)`+1//2O_(2)rarr CO , Delta H = -110.5` KJ `CO+1//2O_(2)rarr CO_(2),Delta H=-283.2` KJ the heat of reacti

Last Answer : From the thermochemical reactions, C(graphite)`+1//2O_(2)rarr CO , Delta H = -110.5` KJ `CO+1//2O_(2)rarr CO_( ... 7` KJ C. `-172.7` KJ D. `+172.7` KJ

Description : Using the following thermochemical data. `C(S)+O_(2)(g)rarr CO_(2)(g), Delta H=94.0` Kcal `H_(2)(g)+1//2O_(2)(g)rarr H_(2)O(l), Delta H=-68.0` Kcal `C

Last Answer : Using the following thermochemical data. `C(S)+O_(2)(g)rarr CO_(2)(g), Delta H=94.0` Kcal `H_(2)(g)+1// ... .0` Kcal C. `-114.0` Kcal D. `+114.0` Kcal

Description : `C(s)+O_(2)(g)rarr CO_(2)(g)+94.0` K cal. `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g), Delta H=-67.7` K cal. From the above reactions find how much heat (Kca

Last Answer : `C(s)+O_(2)(g)rarr CO_(2)(g)+94.0` K cal. `CO(g)+(1)/(2)O_(2)(g)rarr CO_(2)(g), Delta H=-67.7` K cal. ... g)` A. `20.6` B. `26.3` C. `44.2` D. `161.6`

Description : Given that - `2C(s)+2O_(2)(g)rarr 2CO_(2)(g) Delta H = -787 KJ` `H_(2)(g)+ 1//2O_(2)(g)rarr H_(2)O(l) Delta =-286 KJ` `C_(2)H_(2)(g)+(5)/(2)O_(2)(g)ra

Last Answer : Given that - `2C(s)+2O_(2)(g)rarr 2CO_(2)(g) Delta H = -787 KJ` `H_(2)(g)+ 1//2O_(2)(g)rarr H_(2) ... 1802` KJ B. `-1802` KJ C. `-800` KJ D. `+237` KJ

Description : `Cl_(2)(g)rarr2Cl(g)`, In this process value of `Delta H` will be -

Last Answer : `Cl_(2)(g)rarr2Cl(g)`, In this process value of `Delta H` will be - A. Positive B. Negative C. Zero D. Nothing can be predicted

Description : Given that standard heat enthalpy of `CH_(4), C_(2)H_(4)` and `C_(3)H_(8)` are -17.9, 12.5, -24.8 Kcal/mol. The `Delta H` for `CH_(4)+C_(2)Hrarr C_(3)

Last Answer : Given that standard heat enthalpy of `CH_(4), C_(2)H_(4)` and `C_(3)H_(8)` are -17.9, 12.5, -24.8 Kcal ... . `-30.2` Kcal C. 55.2 Kcal D. `-19.4` Kcal

Description : Which of the following reactions is `Delta H` less than `Delta E` ?

Last Answer : Which of the following reactions is `Delta H` less than `Delta E` ? A. `C_(12)H_(22)O_(11)(s)+6O_(2)(g)rarr ... g)` D. `N_(2)(g)+O_(2)(g)rarr 2NO(g)`

Description : The difference in `Delta H` and `Delta E` for the combustion of methane at `25^(@)C` would be :-

Last Answer : The difference in `Delta H` and `Delta E` for the combustion of methane at `25^(@)C` would be :- A ... Cals C. `2xx298xx -3` Cals D. `2xx25xx -3` Cals

Description : For which change `Delta H ne Delta E` :-

Last Answer : For which change `Delta H ne Delta E` :- A. `H_(2)(g)+I_(2)(g)hArr 2HI(g)` B. `HCl(l)+NaOH(l)rarr NaCl( ... (g)` D. `N_(2)(g)+3H_(2)(g)rarr2NH_(3)(g)`

Description : Under which of the following conditions is the relation, `Delta H = Delta E + P Delta V` valid for a system :-

Last Answer : Under which of the following conditions is the relation, `Delta H = Delta E + P ... and pressure D. Constant temperature, pressure and composition

Description : The difference in `Delta H` and `Delta E` for the combustion of methane at `25^(@)C` would be :-

Last Answer : The difference in `Delta H` and `Delta E` for the combustion of methane at `25^(@)C` would be :- A ... cals C. `2xx298xx -3` cals D. `2xx25xx -3` cals

Description : For `CaCO_(3)(s)rarr CaO(s)+CO_(2)(g)` at `977^(@)C, Delta H = 174` KJ/mol , then `Delta E` is :-

Last Answer : For `CaCO_(3)(s)rarr CaO(s)+CO_(2)(g)` at `977^(@)C, Delta H = 174` KJ/mol , then `Delta E` is :- A. 160 KJ B. 163.6 KJ C. 186.4 KJ D. 180 KJ

Description : For the reversible isothermal expansion of one mole of an ideal gas at 300 K, from a volume of `10 dm^(3)` to `20 dm^(3), Delta H` is -

Last Answer : For the reversible isothermal expansion of one mole of an ideal gas at 300 K, from a volume of `10 dm^(3)` to ` ... . `-1.73 KJ` C. `3.46 KJ` D. Zero

Description : For a reversible process at T = 300K, the volume is increased from `V_(i)=1L` to `V_(f)=10L`. Calculate `Delta H` if the process is isothermal -

Last Answer : For a reversible process at T = 300K, the volume is increased from `V_(i)=1L` to `V_(f)=10L`. Calculate `Delta H ... kJ B. 4.98 kJ C. 0 D. `-11.47 kJ`

Description : `Ph-CH=CH-underset(O)underset(C)-H overset((i) CH_(3)CH_(2)MgBr)to overset((ii) H_(3)O^(o+))to(X) overset(Cu,Delta)to(Y)`

Last Answer : `Ph-CH=CH-underset(O)underset(C)-H overset((i) CH_(3)CH_(2)MgBr)to overset((ii) H_(3)O^(o+))to(X) ... -underset(O)underset(||)(C)-CH=CH-CH_(2)-CH_(3)`

Description : `Ph-CH=CH-underset(O)underset(C)-H overset((i) CH_(3)CH_(2)MgBr)to overset((ii) H_(3)O^(o+))to(X) overset(Cu,Delta)to(Y)`

Last Answer : `Ph-CH=CH-underset(O)underset(C)-H overset((i) CH_(3)CH_(2)MgBr)to overset((ii) H_(3)O^(o+))to(X) ... -underset(O)underset(||)(C)-CH=CH-CH_(2)-CH_(3)`

Description : (4) Liquid Hydrogen + Liquid Oxygen Explanation: LOX and liquid hydrogen, used in the Space Shuttle orbiter, the Centaur upper stage of the Atlas V, Saturn V upper stages, the ... to withstand high combustion pressures and temperatures and they can be regeneratively cooled by the liquid propellant.

Last Answer : The BOD values of water indicate the (1) amount of organic debris (2) amount of oxygen used for biochemical oxidation (3) amount of oxygen used for biochemical reduction (4) amount of ozone used for biochemical oxidation

Description : Determine the values of equilibrium constant (Kc) and ΔG° for the following reaction : Ni(s) + 2Ag+ (aq) → Ni2+ (aq) + 2Ag(s), E° = 1.05 V (1F = 96500 C mol-1 -Chemistry

Last Answer : According to the formula ΔG° = -nFE° = – 2 × 96500 ×1.05 or ΔG° = -202650 J mol-1 = -202.65 KJ mol-1 Now ΔG° ⇒ -202650 J Mol-1 R = 8.314 J/Mol/K, T = 298 K

Description : The knowledge of initial concentration and rate constant is necessary to determine the half life time of a reaction of __________ order. A) Zero (B) First (C) Second (D) None of these

Last Answer : (C) Second

Description : Buffer solutions have constant acidity and alkalinity because: (1) they have fixed value of pH (2) these give unionised acid or base on reaction with added acid or alkali (3) acids and alkalies in these solutions are shielded from attack by other ions (4) they have large excess of H+ or OH– ions

Last Answer : these give unionised acid or base on reaction with added acid or alkali

Description : Hinge region, the region of Ig molecule which is flexible and more exposed to enzymes is the (A) Region between first and second constant regions of H chain (domains CH1 and CH2) (B) Region between second and ... H chain (CH2 and CH3) (C) Variable regions of H chain (D) Variable regions of L chain

Last Answer : Answer : A

Description : The class specific function of the different immunoglobulin molecules is constituted by (A) Variable region of L chain (B) Constant region of H chain (C) Variable region of H chain (D) Constant region particularly CH2 and CH3 of H chain

Last Answer : Answer : D

Description : The portion of the immunoglobulin molecule that binds the specific antigen is formed by (A) Variable regions of H and L chains (B) Constant region of H chain (C) Constant region of L chain (D) Hinge region

Last Answer : Answer : A

Description : The energy of activation of a chemical reaction: (A) Is same as heat of reaction at constant pressure (B) Is the minimum energy which the molecules must have before the reaction can take place (C) Varies as fifth power of the temperature (D) Both (B) and (C)

Last Answer : (B) Is the minimum energy which the molecules must have before the reaction can take place

Description : Bomb calorimeter is used to determine the (where, GCV - Gross Calorific Value. NCV - Net Calorific Value.) (A) GCV at constant pressure (B) GCV at constant volume (C) NCV at constant pressure (D) NCV at constant volume

Last Answer : (C) NCV at constant pressure

Description : In a constant pressure process steam is generated from 10 bar and 0.8 dry condition till it become dry and saturated. Determine amount of heat added per kg of steam. From steam table at 10 bar Tsat = 179.9°C hf = 762.6 kl/kg, hg = 2776.2 kJ/kg 

Last Answer : Constant pressure process Final condition of steam is dry saturated Enthalpy of dry steam = hg= hf + hfg =2776.2 KJ/Kg .Given Latent heat of vaporization = hfg = hg - hf =2776.2-762.6 =2013.6 KJ/Kg Initial condition ... hfg = 762.6+0.8 X 2013.6 =2373.48 KJ/Kg Heat added = hg-hw = 402.72 KJ/kg

Description : One kg of gas occupying 0.1m^3 at pressure of 14 bar is expanded at constant pressure to 0.2m^3. Determine an initial and final temperature of gas. Take Cp=1.008KJ/KgK, Cv =0.72KJ/KgK.

Last Answer : V1=0.1m^3 V2=0.2 m^3 P1=P2=14 bar Cp=1.008 KJ/KgK Cv=0.72 KJ/KgK R=Cp-Cv R=1.008-0.72 R=0.288KJ/KgK Characteristic gas equation,  P1V1=mRT1 14*10^5*0.1=1*288*T1 T1=486.11K For constant pressure process, V1/T1=V2/T2 0.1/486.11=0.2/T2 T2=972.22K

Description : (∂T/∂P)H is the mathematical expression for (A) Specific heat at constant pressure (Cp) (B) Specific heat at constant volume (Cv) (C) Joule-Thompson co-efficient (D) None of these

Last Answer : (C) Joule-Thompson co-efficient

Description : Template/lock and key theory of enzyme action is supported by (A) Enzymes speed up reaction (B) Enzymes occur in living beings and speed up certain reactions (C) Enzymes determine the direction of reaction (D) Compounds similar to substrate inhibit enzyme activity

Last Answer : Answer : D

Description : Edman’s reaction can be used to (A) Determine the number of tyrosine residues in a protein (B) Determine the number of aromatic amino acid residues in a protein (C) Determine the amino acid sequence of a protein (D) Hydrolyse the peptide bonds in a protein

Last Answer : Answer : C

Description : The order of reaction is the number of moles whose concentrations determine the rate of a reaction at a given temperature Give the integrated equation for first order reaction. K = (2.303 / t) * log (a ... a' is the initial concentration of reactants x' is the amount reacted in time t seconds

Last Answer : What is Threshold energy ?

Description : In the following reaction, Alanine acts as a 3 3 3 3 + + → H H | | H N – – COO —— H N – – COOH C C | | CH CH (A) Acid (B) Base (C) Zwitter ion (D) None of these

Last Answer : Answer : C