Hooke’s law is applicable within
(a)Elastic limit
(b)Plastic limit
(c)Fracture point
(d) Ultimate strength

1 Answer

Answer :

(a)Elastic limit

Related questions

Description : Every material obeys the Hooke’s law within (a) Elastic limit (b) Plastic limit (c) Limit of proportionality (d) None of these

Last Answer : c) Limit of proportionality

Description : The statement : stress is proportional to strain, i.e. the Hooke’s law holds good upto (a) Elastic Limit (b) Proportional Limit (c) Plastic Limit (d) Yield point

Last Answer : (b) Proportional Limit

Description : Every material obeys the Hooke's law within its (A) Elastic limit (B) Plastic point (C) Limit of proportionality (D) None of these

Last Answer : (C) Limit of proportionality

Description : At yield point' of a copper wire A. the load hasn't exceeded the elastic limit yet; so, Hooke's law applies B. the load has already exceeded the elastic limit and the material has become ... stage has passed and the wire has snapped already D. Like Brass and Bronze, Copper has no yield poin

Last Answer : the load has already exceeded the elastic limit and the material has become plastic

Description : All materials obey Hooke's law within elastic limit. When elastic limit is reached, the tensile strain (A) Increases very quickly (B) Decreases very quickly (C) Increases in proportion to stress (D) Decreases in proportion to stress

Last Answer : (A) Increases very quickly

Description : The limit beyond which the material does not behave elastically is known as (a) Proportional limit (b) Elastic limit (c) Plastic limit (d) Yield Point

Last Answer : (b) Elastic limit

Description : Muller Breslau's principle for obtaining influence lines is applicable to (i) Trusses (ii) Statically determinate beams and frames (iii) Statically indeterminate structures, the material of which is elastic and follows Hooke's law (iv ... B) (i), (ii) and (iv) (C) (i) and (ii) (D) Only (i)

Last Answer : (A) (i), (ii) and (iii)

Description : At yield point of a test piece, the material  (A) Obeys Hooke's law  (B) Behaves in an elastic manner  (C) Regains its original shape on removal of the load  (D) Undergoes plastic deformation 

Last Answer : (D) Undergoes plastic deformation 

Description : Hooke's law states that A. the extension is proportional to the load when the elastic limit is not exceeded B. the extension is inversely proportional to the load when the elastic limit is not ... is independent of the load when the elastic limit is not exceeded D. load is dependent on extension

Last Answer : the extension is proportional to the load when the elastic limit is not exceeded

Description : Hooke's law (A) Applies to elastic deformation (B) Applies beyond limit of proportionality in stress-strain curve (C) States that stress is inversely proportional to strain upto elastic limit (D) None of these

Last Answer : (A) Applies to elastic deformation

Description : State Hooke’s Law of elasticity. Define Elastic limit.

Last Answer : Hooke’s Law:- Within elastic limit, stress is directly proportional to strain.  Elastic limit: -It is the maximum value of the stress upto which the body shows elasticity.

Description : Pick out the correct statement. (A) Materials exhibiting high elasticity obey Hooke's law (B) The elastic behaviour of rubber under compression is the same as its behaviour under tension (C) ... to its plastic deformation (D) The stress required to cause plastic flow in polycrystalline material is

Last Answer : Option B

Description : Failure of a material is termed as fatigue failure, if it fails below the yield point. The resistance to fatigue failure of a material is measured by the (A) Ultimate tensile strength (U.T.S.) (B) Endurance limit (C) Elastic limit (D) None of these

Last Answer : (B) Endurance limit

Description : Factor of safety for fatigue loading is the ratio of (a) elastic limit to the working stress (b) Young's modulus to the ultimate tensile strength (c) endurance limit to the working stress (d) elastic limit to the yield point

Last Answer : (c) endurance limit to the working stress

Description : Stresses encountered in the metal forming processes are less than the __________ of the material. (A) Fracture strength (B) Yield strength (C) Elastic limit (D) Limit of proportionality

Last Answer : Option A

Description : The law which states, "Within elastic limits strain produced is proportional to the stress producing  it", is known as  (A) Bernoulli's law  (B) Stress law  (C) Hooke's law  (D) Poisson's law

Last Answer : (C) Hooke's law 

Description : What will happen if stresses induced due to surge in the spring exceeds the endurance limit stress of the spring. (a) Fatigue Failure (b) Fracture (c) None of the listed (d) Nipping

Last Answer : (a) Fatigue Failure

Description : The stress at which extension of a material takes place more quickly as compared to increase in load, is called (a) No elastic zone (b) Plastic point (c) Yield point (d) Breaking point

Last Answer : (c) Yield point

Description : Cast iron has (A) Very high tensile strength (B) High ductility (C) High malleability (D) Elastic limit close to ultimate breaking strength

Last Answer : (D) Elastic limit close to ultimate breaking strength

Description : Cast iron has (A) High ductility (B) High malleability (C) Very high tensile strength (D) Its elastic limit very close to ultimate breaking strength

Last Answer : (D) Its elastic limit very close to ultimate breaking strength

Description : Cast iron is having very high (A) Proximity between its elastic limit and ultimate breaking strength (B) Ductility (C) Tensile strength (D) All (A), (B) and (C)

Last Answer : (A) Proximity between its elastic limit and ultimate breaking strength

Description : The resistance to fatigue of a material is measured by (a) elastic limit (b) Young's modulus (c) ultimate tensile strength (d) endurance limit

Last Answer : (d) endurance limit

Description : In a ductile material, the strength are (a)Firstly Ultimate >yield > elastic limit (b) Secondly Ultimate > yield =elastic limit (c) Thirdly Ultimate=yield=elastic limit (d) None

Last Answer : (a)Firstly Ultimate >yield > elastic limit

Description : In a brittle material, the strength are (a) Firstly Ultimate >yield > elastic limit (b) Secondly Ultimate > yield =elastic limit (c) Thirdly Ultimate=yield=elastic limit (d) None

Last Answer : (c) Thirdly Ultimate=yield=elastic limit

Description : Fatigue resistance of a material is measured by the (A) Elastic limit (B) Ultimate tensile strength (C) Young's modulus (D) Endurance limit

Last Answer : (D) Endurance limit

Description : Distortion or change in shape of a cast partial denture clasp during its clinical use probably indicates that the: A. Ductility was too low B. Hardness was too great C. Ultimate tensile strength was too low D. Tension temperature was too high E. Elastic limit was exceeded

Last Answer : E. Elastic limit was exceeded

Description : The most important property for the spring material is (a) High elastic limit (b) High deflection value (c) Resistance to fatigue and shock (d) All of these

Last Answer : (d) All of these

Description : The most important property for the spring material is (a) High elastic limit (b) High deflection value (c) Resistance to fatigue and shock (d) All of these

Last Answer : (d) All of these

Description : Spring is an (a) Elastic device (b) Plastic device (c) Elastic as well as plastic device (d) None

Last Answer : (a) Elastic device

Description : Spring is an (a) Elastic device (b) Plastic device (c) Elastic as well as plastic device (d) None

Last Answer : (a) Elastic device

Description : A brittle material has (a) No elastic zone (b) No plastic zone (c) Large plastic zone (d) None of these

Last Answer : 2

Description : A seamless cylinder of storage capacity of 0.03mᵌis subjected to an internal pressure of 21MPa. The ultimate strength of material of cylinder is 350N/mm².Determine the thickness of the cylinder if it is twice the diameter of the cylinder. a) 12mm b) 4mm c) 8mm d) 16mm

Last Answer : c) 8mm

Description : A seamless cylinder of storage capacity of 0.03mᵌis subjected to an internal pressure of 21MPa. The ultimate strength of material of cylinder is 350N/mm².Determine the length of the cylinder if it is twice the diameter of the cylinder. a) 540mm b) 270mm c) 400mm d) 350mm

Last Answer : a) 540mm

Description : According to ASME code, maximum allowable shear stress is taken as X% of yield strength or Y% of ultimate strength. a) X=30 Y=18 b) X=30 Y=30 c) X=18 Y=18 d) X=18 Y=30

Last Answer : a) X=30 Y=18

Description : Strength of a shaft a. Is equal to maximum shear stress in the shaft at the time of elastic failure b. Is equal to maximum shear stress in the shaft at the time of rupture c. Is equal to torsional rigidity d. Is ability to resist maximum twisting moment

Last Answer : d. Is ability to resist maximum twisting moment

Description : Principle of superposition is applicable when (A) Deflections are linear functions of applied forces (B) Material obeys Hooke's law (C) The action of applied forces will be affected by small deformations of the structure (D) None of the above

Last Answer : (A) Deflections are linear functions of applied forces

Description : The spring operates (A) Within plastic limit (B) Within elastic limit (C) Within elasto-plastic limit (D) Within visco-elastic limit

Last Answer : (B) Within elastic limit

Description : When mild steel is subjected to a tensile load, its fracture will conform to (a) Star shape (b) Granular shape (c) Cup and cone shape (d) Fibrous shape

Last Answer : (c) Cup and cone shape

Description : Creep coefficient is the ratio of [ A ] Ultimate Creep strain to elastic strain [ B ] Elastic strain to ultimate Creep strain [ C ] Elastic strain to plastic strain [ D ] Plastic strain to elastic strain

Last Answer : [ A ] Ultimate Creep strain to elastic strain

Description : Rittinger number which designates the new surface produced per unit of mechanical energy absorbed by the material being crushed, depends on the (A) State or manner of application of the crushing force (B) Ultimate strength of the material (C) Elastic constant of the material (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : Breaking stress is (a) greater than the ultimate stress (b) Less than the ultimate stress (c) equal to the ultimate stress (d) None

Last Answer : (a) greater than the ultimate stress

Description : What Properties Are Needed To Be Considered For Application Calling For Following Requirements? I) Rigidity. Ii) Strength Of No Plastic Deformation Under Static Load. Iii) Strength To Withstand Overload Without Fracture.

Last Answer : i) Reliability – elastic modulus and yield strength. ii) Strength (for no plastic deformation under static loading) – yield point. iii) Strength (overload) – Toughness and impact resistance. iv) Wear resistance – Hardness. v) Reliability and safety – Endurance limit and yield.

Description : At fully plastic twisting moment (a) only fibres at surface are stressed to yield point in shear (b) fibres at centre are stressed to yield point in shear (c) all fibres are stressed to yield point in shear (d) none of these

Last Answer : (c) all fibres are stressed to yield point in shear

Description : In a simple bending theory, one of the assumption is that the material of the beam is isotropic. This assumption means that the a. normal stress remains constant in all directions b. ... c. elastic constants are same in all the directions d. elastic constants varies linearly in the material

Last Answer : c. elastic constants are same in all the directions

Description : 48. A perfectly elastic body (a) Can move freely (b) Has perfectly smooth surface (c) Is not deformed by any external surface (d) Recovers its original size and shape when the deforming force is removed.

Last Answer : d) Recovers its original size and shape when the deforming force is removed.

Description : Which of the following material is more elastic? (a) Rubber (b) Glass (c) Steel (d) Wood

Last Answer : (c) Steel

Description : The ultimate consolidation settlement of a structure resting on a soil (A) Decreases with the increase in the initial voids ratio (B) Decreases with the decrease in the plastic limit (C) Increases ... increase in the initial voids ratio (D) Increases with the decrease in the porosity of the soil

Last Answer : Answer: Option A

Description : From strength point of view, whether hollow or solid shaft will be preferable (a) Solid shaft (b) Hollow shaft (c) Both solid as well as hollow shaft (d) None

Last Answer : b) Hollow shaft

Description : A material no longer behaves elastically beyond (A) Plastic limit (B) Limiting load (C) Elastic limit (D) Breaking load

Last Answer : (C) Elastic limit

Description : The property of soil which allows it to be deformed rapidly, without rupture, without elastic rebound and without volume change is known as a) Porosity b) Plasticity* c) Stiffness d) Plastic limit

Last Answer : b) Plasticity*