Shear stress causes
(a) Deformation
(b)Elongation
(c) Contraction
(d) None

1 Answer

Answer :

(d) None

Related questions

Description : Shear stress causes (a) Deformation (b) Distortion (c) Deformation as well as distortion (d) None

Last Answer : b) Distortion

Description : Shear stress causes (a) Deformation (b) Distortion (c) Displacement (d) None

Last Answer : (b) Distortion

Description : When a bar is subjected to increase in temperature and its deformation is prevented, the stress induced in the bar is (a) Tensile (b) Compressive (c) Shear (d) None of the above

Last Answer : (b) Compressive

Description : When a bar is subjected to a change of temperature and its longitudinal deformation is prevented, the stress induced in the bar is (a) Tensile (b) Compressive (c) Shear (d) Temperature

Last Answer : (d) Temperature

Description : A helical spring is fabricated by wrapping wire 19.05 mm in diameter around a forming cylinder 203.2 mm in diameter. Compute the number of turns required to permit an elongation of 101.6 mm. without exceeding a shearing ... G = 82737 N/mm2. a. 10 turns b. 20 turns c. 25 turns d. 30 turns

Last Answer : a. 10 turns

Description : Determine the maximum shearing stress and elongation in a helical steel spring composed of 20 turns of 20-mm-diameter wire on a mean radius of 90 mm when the spring is supporting a load of 1.5 kN. and G = 83 GPa. a. 200 mm b. 105.4 mm c. 150 mm d. 250 mm

Last Answer : b. 105.4 mm

Description : The deformation per unit length is called (a) Strain (b) Stress (c) Elasticity (d) None of these

Last Answer : (a) Strain

Description : Wahl suggested the correction in the stress factor to account for a. the additional transverse shear stress b. stress concentration c. fatigue stress d. axial stress

Last Answer : b. stress concentration

Description : The type of stress induced in a closed coiled helical tension spring is a. tensile b. compressive c. torsional shear d. tensile and compressive

Last Answer : c. torsional shear

Description : Wahl’s stress concentration factor is used in close coiled springs under axial load to account for (a) Shear effect (b) Bending effect (c) Compression effect (d) none

Last Answer : (b) Bending effect

Description : When two helical springs of equal lengths are arranged to form a cluster spring, then a. Shear stress in each spring will be equal b. Load taken by each spring will be half the total load c. Only A is correct d. Both A and B is correct

Last Answer : d. Both A and B is correct

Description : Find the shear stress in the spring wire used to design a helical compression sprig if a load of 1200N is applied on the spring. Spring index is 6, and wire diameter 7mm. a) 452.2N/mm² b) 468.6N/mm² c) 512.2N/mm² d) None of the listed

Last Answer : b) 468.6N/mm²

Description : Which factor is used to consider the effects of direct shear stress and torsional shear stress when curvature effect stress is not considered? a. Shear stress concentration factor b. Wahl shear stress concentration factor c. Both a. and b. d. None of the above

Last Answer : a. Shear stress concentration factor

Description : The shear stress concentration factor (Ks) in mechanical springs is given as _____ a. (1 + 0.5 / C) b. 0.615 / C c. (1 + 0.615 / C) d. [(4C – 1) / (4C + 1)] + [0.615 / C]

Last Answer : a. (1 + 0.5 / C)

Description : Shear stress in a close coiled helical spring is (a) 16WD/π d3 (b) 32WD/π d3 (c) 8WD/π d3 (d) None

Last Answer : (c) 8WD/π d3

Description : Maximum shear stress in a thick shell is a) (σh+ σl)/2 b) (σh+ σr)/2 c) (σh– σl)/2 d) None

Last Answer : b) (σh+ σr)/2

Description : Considering σh, σl and σr, maximum shear stress will be a) (σh—σl) /2 b) (σl— σh) /2 c) (σh + σr) /2 d) None

Last Answer : c) (σh + σr) /2

Description : A thin spherical shell under internal pressure will fail under a. Maximum shear stress b. Principal compressive stress c. Principal tensile stress d. None

Last Answer : c. Principal tensile stress

Description : When a column is subjected to an eccentric load, the stress induced in the column will be (a) direct stress only (b) bending stress only (c) shear stress only (d) direct and bending stress both

Last Answer : (d) direct and bending stress both

Description : If yielding strength=400N/mm², the find the permissible shear stress according to ASME standards. a) 72 N/mm² b) 76 N/mm² c) 268 N/mm² d) 422 N/mm²

Last Answer : a) 72 N/mm²

Description : According to ASME code, maximum allowable shear stress is taken as X% of yield strength or Y% of ultimate strength. a) X=30 Y=18 b) X=30 Y=30 c) X=18 Y=18 d) X=18 Y=30

Last Answer : a) X=30 Y=18

Description : A transmission shaft subjected to bending loads must be designed on the basis of (a) maximum normal stress theory (b) maximum shear stress theory (c) maximum normal stress and maximum shear stress theories (d) fatigue strength

Last Answer : (a) maximum normal stress theory

Description : A hollow circular tube with a 2.3-cm I.D. and 2.5-cm O.D. is rigidly supported at its ends. A 2.5 kN-m torque is applied at the center of this tube. What is the maximum shear stress acting on this tube? (a) 2.87Mpa (b) 4.27 Mpa (c) 6.92 Mpa (d) 10.2 Mpa

Last Answer : (a) 2.87Mpa

Description : A hollow shaft has an inner diameter of 3.7 cm and an outer diameter of 4.0 cm. A 1 kN-m torque is applied to this shaft. What is the shear stress at the mid-radius of this shaft? (a) 117Mpa (b) 178 Mpa (c) 286 Mpa (d) 363 Mpa

Last Answer : (c) 286 Mpa

Description : Variation of shear stress in a shaft is (a) Parabolic (b) Linear (c) Cubical (d) None

Last Answer : b) Linear

Description : A circular shaft subjected to torsion undergoes a twist of 10in a length of 120 cm. If the maximum shear stress induced is limited to 1000 kg/cm2and if modulus of rigidity G = 0.8 x 106then the radius of the shaft should be (a) p/8 (b) p/27 (c) 18/p (d) 27/p

Last Answer : (d) 27/p

Description : A solid shaft has diameter 80 mm. It is subjected to a torque of 4 KNm. The maximum shear stress induced in the shaft would be (a) 75/p N/mm2 (b) 250/p N/mm2 (c) 125/p N/mm2 (d) 150/p N/mm2

Last Answer : (c) 125/p N/mm2

Description : A hollow prismatic beam of circular section is subjected to a torsional moment. The maximum shear stress occurs at (a) inner wall of cross section (b) middle of thickness (c) outer surface of shaft (d) none of these

Last Answer : (c) outer surface of shaft

Description : Torque and bending moment of 100 kN.m and 200 kN.m acts on a shaft which has external diameter twice of internal diameter. What is the external diameter of the shaft which is subjected to a maximum shear stress of 90 N/mm2? a. 116.5 mm b. 233.025 mm c. 587.1 mm d. 900 mm

Last Answer : c. 587.1 mm

Description : What is the maximum shear stress induced in a solid shaft of 50 mm diameter which is subjected to both bending moment and torque of 300 kN.mm and 200 kN.mm respectively? a. 9.11 N/mm2 b. 14.69 N/mm2 c. 16.22 N/mm2 d. 20.98 N/mm2

Last Answer : b. 14.69 N/mm2

Description : What is the shear stress acting on the outer surface of a hollow shaft subjected to a torque of 100 Nm?(The inner and outer diameter of the shaft is 15 mm and 30 mm respectively.) a. 50.26 N/mm2 b. 40.24 N/mm2 c. 20.120 N/mm2 d. 8.74 N/mm2

Last Answer : c. 20.120 N/mm2

Description : The shear stress varies from centre to the surface of the shaft with (a) Uniform rate (b) Varying rate (c) Remains same (d) None of these

Last Answer : (a) Uniform rate

Description : The shear stress is minimum at (a) Axis of the shaft (b) Outer surface of the shaft (c) Anywhere inside the shaft (d) None of these

Last Answer : (c) Anywhere inside the shaft

Description : When a shaft is subjected to a twisting moment, every cross-section of the shaft will be under (a) Tensile stress (b) Compressive stress (c) Shear stress (d) All of these

Last Answer : c) Shear stress

Description : Strength of a shaft a. Is equal to maximum shear stress in the shaft at the time of elastic failure b. Is equal to maximum shear stress in the shaft at the time of rupture c. Is equal to torsional rigidity d. Is ability to resist maximum twisting moment

Last Answer : d. Is ability to resist maximum twisting moment

Description : Which of the following is incorrect? a. In a solid shaft maximum shear stress occurs at radius = radius of shaft b. In a solid shaft maximum shear stress occurs at center c. In a hollow ... maximum shear stress occurs at outer radius d. In a hollow shaft minimum shear stress occurs at inner radius

Last Answer : b. In a solid shaft maximum shear stress occurs at center

Description : For two shafts joined in parallel, the --------------- in each shaft is same. a. shear stress. b. Angle of twist c. torque d. torsional stress.

Last Answer : b. Angle of twist

Description : For two shafts joined in series, the --------------- in each shaft is same. a. shear stress. b. Angle of twist c. torque d. torsional stress.

Last Answer : c. torque

Description : Maximum shear stress in a hollow shaft subjected to a torsional moment is at the a. Middle of thickness. b. At the inner surface of the shaft. c. At the outer surface of the shaft. d. At the middle surface of the shaft.

Last Answer : c. At the outer surface of the shaft.

Description : The ratio of maximum bending stress to maximum shear stress on the cross section when a shaft is simultaneously subjected to a torque T and bending moment M, a. T/M b. M/T c. 2T/M d. 2M/T

Last Answer : d. 2M/T

Description : Maximum shear stress of a solid shaft is given by a. 16T/πd b. 16T/πd2 c. 16T/πd3 d. 16T/πd4

Last Answer : c. 16T/πd3

Description : The variation of shear stress in a circular shaft subjected to torsion is a. Linear b. Parabolic c. Hyperbolic. d. Uniform

Last Answer : a. Linear

Description : Magnitude of shear stress induced in a shaft due to applied torque varies from a. Maximum at centre to zero at circumference. b. Maximum at centre to minimum (not-zero) at circumference. c. Zero at centre to maximum at circumference. d. Minimum (not zero) at centre to maximum at circumference.

Last Answer : c. Zero at centre to maximum at circumference.

Description : A beam of uniform strength has a. same cross-section throughout the beam b. same bending stress at every section c. same bending moment at every section d. same shear stress at every section

Last Answer : b. same bending stress at every section

Description : Shear stress in a I-section beam is maximum art the (a) Outermost fiber (b) At the junction of web and flange (c) Central fiber (d) None

Last Answer : b) At the junction of web and flange

Description : Shear stress is maximum at the (a) Outermost fiber (b) Central fiber (c) Neither outermost nor central fiber (d) None

Last Answer : (b) Central fiber

Description : Shear stress is zero at the (a) Outermost fiber (b) Central fiber (c) Neither outermost nor central fiber (d) None

Last Answer : (a) Outermost fiber

Description : Shear stress variation is (a) Linear (b) Polynomial (c) Parabolic (d) None

Last Answer : (c) Parabolic

Description : Shear stress in the beam acting on the cross section is (a) Normal to the cross section (b) Tangential to the cross section (c) Neither normal nor tangential (d) None

Last Answer : b) Tangential to the cross section

Description : The shear stress acting on the neutral axis of a beam is _____ a. maximum b. minimum c. zero d. none of the above

Last Answer : a. maximum