The bending formula is given as _____
a. (M/E) = (σ/y) = (R/I)
b. (M/y) = (σ/I) = (E/R)
c. (M/I) = (σ/y) = (E/R)
d. none of the above

1 Answer

Answer :

c. (M/I) = (σ/y) = (E/R)

Related questions

Description : The graphical representation of variation of axial load on y axis and position of cross section along x axis is called as _____ (a) Bending moment diagram (b) Shear force diagram (c) Stress-strain diagram (d) Trust diagram

Last Answer : (d) Trust diagram

Description : Equivalent torque in combined bending and torsion is given by a. Te = (M^2 + T^2)^1/2 b. Te = ½(M^2 + T^2)^1/2 c. Te = M + T d. Te = 1/2 [M+(M^2 + T^2)^1/2]

Last Answer : a. Te = (M^2 + T^2)^1/2

Description : Equivalent bending moment in a shaft subjected to axial load P, torque T and bending moment M is (a) Meq = 0.5 [M + (M2 + T2)0.5]0.5 (b) Meq = 0.5 [M + (M2 + T2)0.5] (c) Meq = ( M2 + T2)0.5 (d) None

Last Answer : (b) Meq = 0.5 [M + (M2 + T2)0.5]

Description : Equivalent torque in a shaft subjected to axial load P, torque T and bending moment M is (a) Teq = (Pa2 + M2 + T2) (b) Teq = (Pa2 + M2 + T2)0.5 (c)Teq = ( M2 + T2)0.5 (d) None

Last Answer : c)Teq = ( M2 + T2)0.5

Description : Torque and bending moment of 100 kN.m and 200 kN.m acts on a shaft which has external diameter twice of internal diameter. What is the external diameter of the shaft which is subjected to a maximum shear stress of 90 N/mm2? a. 116.5 mm b. 233.025 mm c. 587.1 mm d. 900 mm

Last Answer : c. 587.1 mm

Description : A shaft a. Is always subjected to pure torsion b. Combination of M & T but no end thrust c. Combination of torque & end thrust but no bending moment d. May be subjected to a combination of M, T and end thrust

Last Answer : d. May be subjected to a combination of M, T and end thrust

Description : In combined bending and torsion equivalent bending moment is a. Me = (M^2 + T^2)^1/2 b. Me = ½(M^2 + T^2)^1/2 c. Me = M+(M^2 + T^2)^1/2 d. Me = 1/2 [M+(M^2 + T^2)^1/2]

Last Answer : d. Me = 1/2 [M+(M^2 + T^2)^1/2]

Description : The ratio of maximum bending stress to maximum shear stress on the cross section when a shaft is simultaneously subjected to a torque T and bending moment M, a. T/M b. M/T c. 2T/M d. 2M/T

Last Answer : d. 2M/T

Description : A uniformly distributed load of 20 kN/m acts on a simply supported beam of rectangular cross section of width 20 mm and depth 60 mm. What is the maximum bending stress acting on the beam of 5m? a. 5030 Mpa b. 5208 Mpa c. 6600 Mpa d. Insufficient data

Last Answer : b. 5208 Mpa

Description : When the shaft is subjected to pure bending moment, the bending stress is given by? a) None of the listed b) 32M/πdᵌ c) 16M/πdᵌ d) 8M/πdᵌ

Last Answer : b) 32M/πdᵌ

Description : A concentrated load P acts on a simply supported beam of span L at a distance L/3 from the left support. The bending moment at the point of application of the load is given by (a) PL/3 (b) 2PL/3 (c) PL/9 (d) 2PL/9

Last Answer : (d) 2PL/9

Description : Most important features of any spring are (a) Deflection, stiffness and strength (b) Stiffness, bending and shear strengths (c) Strain energy, deflection and strength (d) None

Last Answer : (c) Strain energy, deflection and strength

Description : Propagation of fatigue failure is always due to compressive stresses. (a) Due to bending (b) Due to tensile (c) Due to fatigue (d) None of the listed

Last Answer : (b) Due to tensile

Description : Coil springs absorb shocks by (a) bending (b) twisting (c) compression (d) tension

Last Answer : (c) compression

Description : Leaf springs absorb shocks by (a) bending (b) twisting (c) compression (d) tension

Last Answer : a) bending

Description : Maximum bending stress in a leaf spring is (a) 3WL/4nbt2(b) 3WL/8nbt2(c) 3WL/2nbt2(d) None

Last Answer : (c) 3WL/2nbt2

Description : eaf springs are designed on the basis of (a) Maximum bending stresses (b) Maximum deflection (c) Maximum bending as well as maximum deflection (d) None

Last Answer : (c) Maximum bending as well as maximum deflection

Description : Coil springs absorb shocks by (A) bending (B) twisting (C) compression (D) tension

Last Answer : (C) compression

Description : Most important features of any spring are (a) Deflection, stiffness and strength (b) Stiffness, bending and shear strengths (c) Strain energy, deflection and strength (d) None

Last Answer : (c) Strain energy, deflection and strength

Description : Wahl’s stress concentration factor is used in close coiled springs under axial load to account for (a) Shear effect (b) Bending effect (c) Compression effect (d) none

Last Answer : (b) Bending effect

Description : A open helical spring under axial torque is designed on the basis of (a) Shear (b) Compression (c) Bending (d) None

Last Answer : d) None

Description : A closed helical spring under axial torque is designed on the basis of (a) Shear (b) Compression (c) Bending (d) None

Last Answer : (c) Bending

Description : A closed helical spring under axial load is designed on the basis of (a) Shear (b) Compression (c) Bending (d) None

Last Answer : (a) Shear

Description : A carriage spring is designed on the basis of (a) Shear (b) Compression (c) Bending (d) None

Last Answer : (c) Bending

Description : A close coiled spring under axial load produces (a) Bending stresses (b) Shear stresses (c) Tensile stresses (d) None

Last Answer : (b) Shear stresses

Description : When a close-coiled helical spring is subjected to an axial load, it is said to be under. (a) Bending (b) Shear (c) Torsion (d) Crushing

Last Answer : (c) Torsion

Description : Lame's theory is associated with a) thick cylindrical shells b) thin cylindrical shells c) direct and bending stresses d) none of these

Last Answer : a) thick cylindrical shells

Description : When a column is subjected to an eccentric load, the stress induced in the column will be (a) direct stress only (b) bending stress only (c) shear stress only (d) direct and bending stress both

Last Answer : (d) direct and bending stress both

Description : Nature of stresses produced in buckling and bending are (a) Same (b) Different (c) Only tensile (d) None

Last Answer : (a) Same

Description : With identical beam and column, buckling occurs as compared to bending under a (a) Lesser load (b) Larger load (c) Equal load (d) None

Last Answer : (a) Lesser load

Description : Bending of beam occurs under (a) Axial load (b) Transverse load (c) Direct load (d) None

Last Answer : (b) Transverse load

Description : The direct stress included in a long column is………….. as compared to bending stress. (a) More (b) Less (c) Same (d) Negligible

Last Answer : d) Negligible

Description : In continuous beam if it is end is fixed supported the bending moment will be a. zero b. neglected c. infinite

Last Answer : a. zero

Description : In continuous beam if it is end simply supported the bending moment will be a. zero b. neglected c. infinite

Last Answer : a. zero

Description : In continuous beam, the intermediate beams are subjected to a. some bending moment b. no bending moment c. no slope d.no deflection

Last Answer : a. some bending moment

Description : Identify the necessary condition for fixed beam a. bending to be as single continuous curve b.bending to be as double continuous curve c.bending to be as discontinuous curve d.bending to be as multiple continuous curve

Last Answer : a. bending to be as single continuous curve

Description : When sinking is accounted in a continuous beam the bending moment is a. modified b.same c.zero d.infinite

Last Answer : a. modified

Description : In comparison with a simply supported beam of same span and load , a continuous beam has a.less maximum bending moment b. same bending moment c. higher maximum bending moment d. twice the bending moment

Last Answer : a.less maximum bending moment

Description : In an UDL fixed beam free moment diagram gives a bending moment of a. Convex up b. Convex down c. Concave up d.Concave down

Last Answer : b. Convex down

Description : In a mid point loaded fixed beam,the free bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : c.triangle

Description : In a mid point loaded fixed beam,the fixed bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : b.rectangle

Description : In an off centrepoint loaded fixed beam the fixed bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : d.trapezium

Description : In an off centre point loaded fixed beam the free bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : c.triangle

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum bending moment b. more value of maximum bending moment c.twice the value of maximum bending moment d.same value of maximum bending moment

Last Answer : a. lesser value of maximum bending moment

Description : For a fixed beam with UDL, maximum bending moment at end is a. wL2/12 b.wL2/24 c.wL2/36 d.wL2/48

Last Answer : a. wL2/12

Description : For a fixed beam with UDL,maximum bending moment at midpoint is a. wL3/248 b. wL2/248 c. wL2/24 d. wL2/24

Last Answer : c. wL2/24

Description : The expression EI d4y/dx4 at a section of a member represents a. Shearing force b. rate of loading c. bending moment d.slope.

Last Answer : b. rate of loading

Description : .The expression EI d3y/dx3 at a section of a member represents a.Shearing force b.rate of loading c.bending moment d.slope.

Last Answer : a.Shearing force

Description : The expression EI d2y/dx2 at a section of a member represents a. Shearing force b.rate of loading c.bending moment d.slope.

Last Answer : c.bending moment

Description : A beam is designed on the basis of a. Maximum bending moment b. Minimum shear force. c.Maximum bending moment as well as for maximum shear force d. None.

Last Answer : c.Maximum bending moment as well as for maximum shear force