How can one estimate how the friction factor changes in heat exchanger tubes with a change in  temperature?

1 Answer

Answer :

Seider and Tate recommended the following for determine friction factors inside heat exchanger tubes  with varying temperatures: First, determine the average, bulk mean temperature in the processing line.  For example if the fluid enters the line at 300 °C and leaves at 280 °C, use 290 °C to determine the  physical properties and friction factors. As for corrections: Laminar Flow If the liquid is cooling, the  friction factor obtained from the mean temperature and bulk properties is divided by (bulk  viscosity/wall viscosity)0.23 and for heating, it’s divided by (bulk viscosity/wall viscosity)0.38. Here, the  bulk and wall viscosity are determined at the mean temperature over the length of the line. Turbulent  Flow If the liquid is cooling, the friction factor obtained from the mean temperature and bulk properties  is divided by (bulk viscosity/wall viscosity)0.11 and for heating, it’s divided by (bulk viscosity/wall  viscosity)0.17.

Related questions

Description : Is there a quick rule-of-thumb to estimate a gas side heat-transfer rate inside the tubes of a shell and tube heat exchanger?

Last Answer : If you need to estimate a gas heat transfer rate or see if a program is getting a reasonable gas rate, use the following: h = 75 X Sq. Root(Op. pressure/100) The operating pressure is ... will be lower for the shell side or if there is more than one exchanger. Source: Gulley Computer Associates

Description : Condensing film co-efficient for steam on horizontal tubes ranges from 5000 to 15000 Kcal/hr.m2 .°C. Condensation of vapor is carried out inside the tube in a shell and tube heat ... drop through the exchanger is desired (D) Temperature of the incoming vapor is very high

Last Answer : (B) Supersaturated

Description : In a shell and tube heat exchanger, floating head is used for (A) Large temperature differentials (B) High heat transfer co-efficient (C) Low pressure drop (D) Less corrosion of tubes

Last Answer : (A) Large temperature differentials

Description : In a heat exchanger with steam outside the tubes, a liquid gets heated to 45°C, when its flow velocity in the tubes is 2 m/s. If the flow velocity is reduced to 1 m/s, other things remaining ... than 45°C (B) More than 45°C (C) Equal to 45°C (D) Initially decreases and remains constant thereafter

Last Answer : (B) More than 45°C

Description : . If all the conditions and dimensions are same, then the ratio of velocity through the tubes of a double pass heat exchanger to that through the single pass heat exchanger is (A) 1 (B) 2 (C) 1/2 (D) 4

Last Answer : (B) 2

Description : The purpose of floating head in a heat exchanger is to (A) Avoid buckling of tubes (B) Provide support for tubes (C) Decrease the pressure drop (D) Facilitate its lengthening, if needed

Last Answer : (A) Avoid buckling of tubes

Description : Pick out the wrong statement: (A) The capacity of an evaporator is reduced by the boiling point elevation (B) Corrosive liquid is normally passed through the tubes in a ... recompression evaporator (D) Heat sensitive materials should be concentrated in high pressure evaporators

Last Answer : (D) Heat sensitive materials should be concentrated in high pressure evaporators

Description : The main function of baffles provided in a shell and tube heat exchanger is to (A) Facilitate the cleaning of outer tube surface (B) Enhance turbulence (C) Hold the tubes in position (D) All 'a', 'b' & 'c'

Last Answer : (B) Enhance turbulence

Description : Vibrations in the tubes of a shell and tube heat exchanger is induced due to the (A) Flow of fluid on the tube and shell sides (B) Oscillations in the flow of shell/tube sides fluid (C) Vibrations ... piping and/or supports due to external reasons (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : In an extended surface heat exchanger, fluid having lower co-efficient (A) Flows through the tube (B) Flows outside the tubes (C) Can flow either inside or outside the tubes (D) Should not be used as it gives very high pressure drop

Last Answer : (B) Flows outside the tubes

Description : Air is to be heated by condensing steam. Two heat exchangers are available (i) a shell and tube heat exchanger and (ii) a finned tube heat exchanger. Tube side heat transfer area are equal in both ... steam on shell side (D) Shell and tube heat exchanger with air on shell side and steam inside tubes

Last Answer : (B) Finned tube heat exchanger with air outside and steam inside

Description : Heat exchanger tubes are never made of (A) Plain carbon steel (B) Stainless steel (C) Lead (D) Copper

Last Answer : (C) Lead

Description : In a gas-liquid shell and tube heat exchanger, the (A) Presence of a non-condensable gas decreases the condensing film co￾efficient (B) Gases under high pressure are routed through the tube side, because high pressure ... water or steam condensate remain localised to the tubes (D) All 'a', 'b' & 'c'

Last Answer : (D) All 'a', 'b' & 'c'

Description : Baffles provided on the shell side of a shell and tube heat exchanger are meant for (A) Providing support for the tubes (B) Improving heat transfer (C) Both 'a' & 'b' (D) Preventing the fouling of tubes & stagnation of shell side fluid

Last Answer : C) Both 'a' & 'b'

Description : Pick out the wrong statement. (A) The controlling resistance in case of heating of air by condensing steam is in the air film (B) The log mean temperature difference (LMTD) for ... a pure fluid at a given pressure from liquid to vapor or vice-versa occurs at saturation temperature

Last Answer : (C) In case of a 1 - 2 shell and tube heat exchanger, the LMTD correction factor value increases sharply, when a temperature cross occurs

Description : In a heat exchanger, one transfer unit means (A) A section of the exchanger in which change in temperature of one stream equals the average driving force in the section (B) The size of the exchanger in which heat transfer rate is 1 kcal/hr (C) Both (A) and (B) (D) None of these

Last Answer : (A) A section of the exchanger in which change in temperature of one stream equals the average driving force in the section

Description : Log mean temperature difference (LMTD) cannot be used, if (A) Heat transfer co-efficient over the entire heat exchanger is not constant (B) There exists an unsteady state (C) The heat capacity is not constant and there is a phase change (D) None of these

Last Answer : (D) None of these

Description : Fouling factor' used in the design of a multipass shell and tube heat exchanger is a (A) Non-dimensional factor (B) Factor of safety

Last Answer : (B) Factor of safety

Description : Pick out the wrong statement. (A) Superheated steam is preferably not used for process heating because of its low heat transfer film co-efficient (B) In a shell and tube heat exchanger ... surface heat exchangers, when the direction of fluid flow is parallel to the axis of the tube

Last Answer : (C) S.I. unit of fouling factor is Watt/m2 .°K

Description : LMTD correction factor which is to be applied for a cross-flow heat exchanger increases with increase in the number of shell passes. Its value for a single pass cross flow heat exchanger is (A) 0 (B) 1 (C) > 1 (D) < 1

Last Answer : (D) < 1

Description : It is not recommended to use a 1-2 shell and tube heat exchanger for a particular heat duty, whenever the LMTD correction factor is (A) > 0.75 (B) < 0.75 (C) < 0.50 (D) < 0.25

Last Answer : (B) < 0.75

Description : LMTD can't be used as such without a correction factor for the (A) Multipass heat exchanger (B) Baffled heat exchanger (C) Condensation of mixed vapour in a condenser (D) All (A) (B) and (C)

Last Answer : (D) All (A) (B) and (C)

Description : For a multipass shell and tube heat exchanger, the LMTD correction factor is always (A) 1 (B) > 1 (C) < 1 (D) Between 1 & 2

Last Answer : (C) < 1

Description : Fouling factor for a heat exchanger is given by (where, U1 = heat transfer co-efficient of dirty surface U2 = heat transfer co-efficient of clean surface). (A) U1 - U2 (B) 1/U1 - 1/U2 (C) 1/U2 - 1/U1 (D) U2 - U1

Last Answer : (B) 1/U1 - 1/U2

Description : Water is a better coolant than a gas (like CO2 , He, N2 etc.), because it (A) Is a better neutron moderator as well (B) Require comparatively smaller pumps and heat exchanger for a given heat transfer rate ... , and it can be pressurised to attain a high temperature (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : In a 1-1 concurrent heat exchanger, if the tube side fluid outlet temperature is equal to the shell side fluid outlet temperature, then the LMTD is (A) ∞ (B) 0 ... temperature (D) Equal to the difference between hot fluid inlet temperature and cold fluid outlet temperature

Last Answer : (B) 0

Description : In a heat exchanger, floating head is provided to (A) Facilitate cleaning of the exchanger (B) Increase the heat transfer area (C) Relieve stresses caused by thermal expansion (D) Increase log mean temperature gradient

Last Answer : (C) Relieve stresses caused by thermal expansion

Description : __________ heat exchanger is the most suitable, when the temperature of shell side fluid is much higher than that of tube side. (A) Single pass, fixed tube sheet (B) U-tube (C) Three pass, fixed tube sheet (D) None of these

Last Answer : (B) U-tube

Description : The outlet temperature of cooling water in a heat exchanger is generally not allowed to exceed above 50°C in industrial practice mainly to avoid (A) Its evaporation loss (B) Excessive corrosion (C) Uneconomic LMTD (D) Decrease in heat exchanger efficiency

Last Answer : (B) Excessive corrosion

Description : In a parallel flow heat exchanger, if the outlet temperature of hot and cold fluids are the same, then the log mean temperature difference (LMTD) is (A) Minimum (B) Maximum (C) Zero (D) Infinity

Last Answer : (C) Zero

Description : In a liquid-liquid heat exchanger, for the same process temperature, the ratio of the LMTD in parallel flow to the LMTD in counter flow is always (A) < 1 (B) > 1 (C) 1 (D) ∞

Last Answer : (A) < 1

Description : Hot water (0.01 m3 /min) enters the tube side of a counter current shell and tube heat exchanger at 80°C and leaves at 50°C. Cold oil (0.05 m3 /min) of density 800 kg/m3 and specific heat of ... mean temperature difference in °C is approximately (A) 32 (B) 37 (C) 45 (D) 50

Last Answer : (A) 32

Description : In a shell and tube type heat exchanger, the floating tube bundle heat arrangement is used (A) In low range of temperature differences (B) In high range of temperature differences (C) Because of its low cost (D) To prevent corrosion of the tube bundles

Last Answer : (B) In high range of temperature differences

Description : Terminal point temperature differences between fluids in case of a heat exchanger is termed as (A) Approach (B) Log mean temperature difference (C) Arithmetic mean temperature difference (D) Geometric mean temperature difference

Last Answer : (A) Approach

Description : LMTD for counter-flow and parallel flow heat exchanger will be the same, when the (A) Cold fluid is heated to a certain temperature by condensing steam (isothermal fluid) (B) Outlet temperature of ... temperature of hot fluid is less than the outlet temperature of the cold fluid (D) None of these

Last Answer : (A) Cold fluid is heated to a certain temperature by condensing steam (isothermal fluid)

Description : In case of a multipass shell and tube heat exchanger, the temperature drop in the fluid (A) Is inversely proportional to the resistance across which the drop occurs (B) And the wall are proportional to individual resistances (C) And the wall is not related (D) None of these

Last Answer : (B) And the wall are proportional to individual resistances

Description : In case of parallel flow heat exchanger, the lowest temperature theoretically attainable by the hot fluid is __________ the outlet temperature of the cold fluid. (A) Equal to (B) More than (C) Less than (D) Either more or less than (depending upon the fluid)

Last Answer : (A) Equal to

Description : For the same heat load and mass flow rate in the tube side of a shell and tube heat exchanger, one may use multipass on the tube side, because it (A) Decreases the pressure drop (B) ... the outlet temperature of cooling medium (C) Increases the overall heat transfer coefficient (D) None of these

Last Answer : (C) Increases the overall heat transfer coefficient

Description : In a shell and tube heat exchanger, (A) The temperature drops in the two fluids and the wall are proportional to individual resistances (B) The temperature drop is inversely proportional to ... ) There is no relationship between temperature drop and resistance (D) The relationship is not generalised

Last Answer : (A) The temperature drops in the two fluids and the wall are proportional to individual resistances

Description : Parallel straight line pattern of temperature distribution for both hot and cold fluids is observed in case of heat exchanger of the type (A) Parallel flow with equal heat capacities (B) Counter ... (C) Counter flow with unequal heat capacities (D) Parallel flow with unequal heat capacities

Last Answer : (B) Counter flow with equal heat capacities

Description : In a counter flow heat exchanger, hot fluid enters at 170°C & leaves at 150°C, while the cold fluid enters at 50°C & leaves at 70°C. The arithmetic mean temperature difference in this case is __________ °C. (A) 20 (B) 60 (C) 120 (D) ∞

Last Answer : (D) ∞

Description : For a heat exchanger, will the overall heat transfer coefficient increase along with an increase in LMTD (log mean temperature difference) around the unit?

Last Answer : The overall heat transfer coefficient is generally weakly dependent on temperature. As the temperatures of the fluids change, the degree to which the overall heat transfer coefficient will be affected depends ... with temperature as I've noted and the U-value will decrease over time with fouling).

Description : All analogy equations connecting friction factor and heat transfer co￾efficient apply only to (A) Wall or skin friction (B) Form friction (C) Both (A) and (B) (D) Turbulent flow

Last Answer : (A) Wall or skin friction

Description : Using an organic fluid that boils at a low temperature means that energy could be regeneratedfrom waste fluids is known as ________. a) Heat exchanger b) Heat remover c) Heat pumps d) Heat absorber

Last Answer : Heat pumps

Description : A waste heat recovery unit (WHRU) is an_________ that transfers heat from process outputs at high temperature to another part of the process for some purpose, usually increased efficiency. a) Energy recovery heat exchanger b) Energy recovery heat diffuser c) Both ‘a’ and ‘b’ d) None of the above

Last Answer : Energy recovery heat exchanger

Description : A waste heat recovery unit is an energy recovery heat exchanger that transfers heat from process outputs at ........ a) High temperature b) Medium temperature c) Low temperature d) Both a & b

Last Answer : High temperature

Description : A ______ is a specialized heat exchanger in which air and water are brought into direct contact with each otherin order to reduce the water's temperature. a. Cooling tower b. Heating tower c. Both d. All are wrong

Last Answer : cooling tower

Description : I will be describing a chemical element. Try to identify it with the fewest number of clues. This chemical element is the most abundant of the rare-earth group. The element is a silver-gray metal ... factor in color television tubes. The atomic number of this element is 58. What is this element?

Last Answer : ANSWER: CERIUM (Ce)

Description : Pick out the wrong statement. (A) Pensky-Marten apparatus is used for determining flash points above 50°C (B) Characterisation factor of paraffinic crude oil is more than 12 (C) Abel ... An oil having high susceptibility to change in viscosity with temperature changes, has a high viscosity index

Last Answer : (D) An oil having high susceptibility to change in viscosity with temperature changes, has a high viscosity index

Description : _________ nuclear reactor does not require a heat exchanger tosupply steam to power turbine. (A) Molten sodium cooled (B) Helium cooled (C) Boiling water (D) Pressurised water

Last Answer : (C) Boiling water