The quantum of light is called:
a. an erg b. an e-v c. a photon d. a phonon

1 Answer

Answer :

c. a photon

Related questions

Description : The _____ of a detector is the fraction of incident photons that produce a photoelectron or electron-hole pair ∙ a. Responsitivity ∙ b. Photon efficiency ∙ c. Aperture ∙ d. Quantum efficiency

Last Answer : d. Quantum efficiency

Description : The law that states “When visible light of high frequency electromagnetic radiation illuminates a metallic surface, electrons are emitted” is known as ____________. ∙ A. Einstein law of photon ∙ B. Marconi’s law ∙ C. Maxwell’s law ∙ D. Plank’s law

Last Answer : D. Plank’s law

Description : Which of the following terms best describes the reason that light is refracted at different angles? ∙ A. Photon energy changes with wavelength ∙ B. Light is refracted as a function of surface smoothness ∙ ... determined partly by a and b ∙ D. The angle is determined by the index of the materials

Last Answer : ∙ D. The angle is determined by the index of the materials

Description : Optical detectors are square-law devices because they respond to _____ rather than amplitude ∙ a. Intensity ∙ b. Light ∙ c. Density ∙ d. Photon

Last Answer : a. Intensity

Description : The quantum of light is called the ____________________.

Last Answer : photon

Description : Which theory states that the light wave behaves as if it consists of many tiny particles? ∙ a. Huygen’s theory ∙ b. Wave theory of light ∙ c. Nyquist theory ∙ d. Quantum theory

Last Answer : ∙ d. Quantum theory

Description : The energy of the photon is ∙ a. Directly proportional to its bandwidth ∙ b. Directly proportional to the Planck’s constant ∙ c. Directly proportional to Boltzmann’s constant ∙ d. Inversely proportional to the Planck’s constant

Last Answer : Directly proportional to the Planck’s constant

Description : What is the photon energy for an infrared wave with frequency of 1012 Hz? ∙ a. 10.6 x 1034 joules ∙ b. 6.63 x 10-34 joules ∙ c. 6.63 x 10-22 joules ∙ d. 10.6 x 1022 joules

Last Answer : ∙ c. 6.63 x 10-22 joules

Description : A packet of energy which is equal to the difference between the two energy levels. ∙ A. Photons ∙ B. Electronvolt ∙ C. Quantum ∙ D. Quanta

Last Answer : A. Photons

Description : Photon is the fundamental unit/ quantum of – (1) gravitation (2) electricity (3) magnetism (4) light

Last Answer : (4) light Explanation: A photon is an elementary particle, the quantum of light and all other forms of electromagnetic radiation. The modern photon concept was developed gradually by Albert Einstein.

Description : Photon is the fundamental unit/ quantum of (1) gravitation (2) electricity (3) magnetism (4) light

Last Answer : light

Description : A hydrogen like atom with atomic number Z is in an excited state of quantum number 2n. It can emit a maximum energy photon of 204 eV. If it makes a tr

Last Answer : A hydrogen like atom with atomic number Z is in an excited state of quantum number 2n. It can emit a ... state energy of hydrogen atom is - 13. 6 eV.

Description : What is the difference between Quantum and photon?

Last Answer : Ans. The smallest packet of Energy of any radiation is called as Quantum and that of Light is known as Photon.

Description : PAR (Photo-synthetically active radiation) is measured in (A)Photon (B) Watts (C) Einstein (D) Quantum

Last Answer : (C) Einstein

Description : In a PIN diode, leakage current in the absence of light is called: a. baseline current b. zero-point current c. dark current d. E-H current

Last Answer : c. dark current

Description : The ratio of the speed of light in air to the speed of light in another substance is called ∙ A. speed factor ∙ B. index of reflection ∙ C. index of refraction ∙ D. speed gain

Last Answer : ∙ B. index of reflection

Description : Single frequency light is called ∙ A. pure ∙ B. intense ∙ C. coherent ∙ D. monochromatic

Last Answer : D. monochromatic

Description : Single-frequency light is called ∙ a. Pure ∙ b. Intense ∙ c. Coherent ∙ d. Monochromatic

Last Answer : d. Monochromatic

Description : The ratio of speed of light in air to the speed of light in another substance is called the ∙ a. Speed factor ∙ b. Index of reflection ∙ c. Index of refraction ∙ d. Dielectric constant

Last Answer : b. Index of reflection

Description : The loss in signal power as light travels down a fiber is called ∙ a. Dispersion ∙ b. Scattering ∙ c. Absorption ∙ d. Attenuation

Last Answer : ∙ d. Attenuation

Description : Dense ____________________ allows many different wavelengths of light to share a cable.

Last Answer : WDM

Description : For safety, you should never ____________________ at the end of an optical fiber unless you know it is not connected to a light source.

Last Answer : look

Description : A ____________________ diode is the usual light detector for single-mode

Last Answer : PIN

Description : A ____________________ diode is the usual light source for single-mode cable.

Last Answer : laser

Description : A ____________________ is a short length of fiber that carries the light away from the source

Last Answer : pigtail

Description : With optical fiber, ____________________ light is more common than visible light.

Last Answer : infrared

Description : Refraction is the ∙ A. bending of light ∙ B. reflection of light waves ∙ C. distortion of light waves ∙ D. diffusion of light waves

Last Answer : A. bending of light

Description : The main benefit of light wave communications over microwaves or any other communications media are ∙ A. lower cost ∙ B. better security ∙ C. wider bandwidth ∙ D. freedom from interface

Last Answer : C. wider bandwidth

Description : EMD is best described by which statement? ∙ A. 70 percent of the core diameter and 70% of the fiber NA should be filled with light. ∙ B. 70 percent of the fiber diameter and 70% of the ... be measured at the output. ∙ D. 70 percent of the unwanted wavelengths should be attenuated by the fiber.

Last Answer : 70 percent of the core diameter and 70% of the fiber NA should be filled with light.

Description : The speed of light in plastic compared to the speed of light in air is ∙ A. less ∙ B. more ∙ C. the same ∙ D. zero

Last Answer : A. less

Description : The upper pulse rate and information-carrying capacity of a cable is limited by ∙ A. pulse shortening ∙ B. attenuation ∙ C. light leakage ∙ D. modal dispersion

Last Answer : D. modal dispersion

Description : Total internal reflection takes place if the light ray strikes the interface at an angle with what relationship to the critical angle? ∙ A. less than ∙ B. greater than ∙ C. equal to ∙ D. zero

Last Answer : ∙ B. greater than

Description : A popular light wavelength fiber-optic cable is ∙ A. 0.7 micrometer ∙ B. 1.3 micrometer ∙ C. 1.5 micrometer ∙ D. 1.8 micrometer

Last Answer : B. 1.3 micrometer

Description : The minimum optical power a light detector can receive and still produce a usable electrical output signal. ∙ A. light responsivity ∙ B. light sensitivity ∙ C. light collectivity ∙ D. illumination

Last Answer : B. light sensitivity

Description : The term responsivity as it applies to a light detector is best described as ∙ A. the time required for the signal to go from 10 to 90 percent of maximum amplitude ∙ B. the ratio of the diode ... . the ratio of the input power to output power ∙ D. the ratio of output current to input current

Last Answer : the ratio of the diode output current to the input optical power

Description : The time it takes a light induced carrier travel across the depletion region of the semiconductor. ∙ A. dispersion ∙ B. response time ∙ C. irradiance ∙ D. transit time

Last Answer : D. transit time

Description : The leakage current that flows through a photodiode with no light input ∙ A. dark voltage ∙ B. dark impedance ∙ C. dark power ∙ D. dark current

Last Answer : D. dark current

Description : A pn-junction diode emits light by spontaneous emission ∙ A. LED ∙ B. APD ∙ C. PIN

Last Answer : A. LED

Description : How can modal dispersion reduced entirely? ∙ A. Use a graded index fiber ∙ B. Use a single-mode fiber ∙ C. Use a monochromatic light source ∙ D. Use a very sensitive light detector

Last Answer : Use a single-mode fiber

Description : It is caused by the difference in the propagation time of light rays that take different paths down the fiber. ∙ A. modal dispersion ∙ B. microbending ∙ C. Rayleigh scattering ∙ D. chromatic dispersion

Last Answer : A. modal dispersion

Description : As light is coupled in a multiport deflective device, the power is reduced by ∙ A. 1.5 dB ∙ B. 0.1 dB ∙ C. 0.5 dB ∙ D. 0.001 dB

Last Answer : C. 0.5 dB

Description : Chromatic dispersion can be eliminated by __________. ∙ A. using a monochromatic light source ∙ B. using a very small numerical aperture fiber ∙ C. using a graded-index fiber ∙ D. using a very sensitive photo detector

Last Answer : A. using a monochromatic light source

Description : Light rays that are emitted simultaneously from an LED and propagated down an optical fiber do not arrive at the far end of the fiber at the same time results to ∙ A. intramodal dispersion ∙ B. pulse length dispersion ∙ C. modal dispersion ∙ D. wavelength dispersion

Last Answer : D. wavelength dispersion

Description : For a single mode optical cable with 0.25 dB/km loss, determine the optical power 100 km from a 0.1-mW light source. ∙ A. -45 dBm ∙ B. -15 dBm ∙ C. -35 dBm

Last Answer : ∙ C. -35 dBm

Description : It is caused by hydroxide ions in the material ∙ A. visible light absorption ∙ B. infrared absorption ∙ C. ultraviolet absorption ∙ D. ion resonance absorption

Last Answer : D. ion resonance absorption

Description : t is a result of photons of light that are absorbed by the atoms of the glass core molecule. ∙ A. ion resonance absorption ∙ B. infrared absorption ∙ C. ultraviolet absorption ∙ D. visible light absorption

Last Answer : B. infrared absorption

Description : It is caused by valence electrons in the silica material from which the fiber are manufactured. ∙ A. ion resonance absorption ∙ B. infrared absorption ∙ C. ultraviolet absorption ∙ D. visible light absorption

Last Answer : ultraviolet absorption

Description : It is analogous to power dissipation to copper cables, impurities in the fiber absorb the light and covert it to heat. ∙ A. power loss ∙ B. absorption loss ∙ C. resistive loss ∙ D. heat loss

Last Answer : B. absorption loss

Description : Which of the following is not a factor in cable light loss? ∙ A. reflection ∙ B. absorption ∙ C. scattering ∙ D. dispersion

Last Answer : A. reflection

Description : Results in reduction in the power of light wave as it travels down the cable. ∙ A. power loss ∙ B. absorption loss ∙ C. resistive loss ∙ D. heat loss

Last Answer : A. power loss