For same compression ratio and for same heat added  (a) Otto cycle is more efficient than Diesel cycle  (b) Diesel cycle is more efficient than Otto cycle  (c) efficiency depends on other factors  (d) both Otto and Diesel cycles are equally efficient  (e) none of the above.

1 Answer

Answer :

Answer : a

Related questions

Description : Otto cycle efficiency is higher than Diesel cycle efficiency for the same compression ratio and heat input because in Otto cycle  A. combustion is at constant volume  B. expansion and compression are isentropic  C. maximum temperature is higher  D. heat rejection is lower

Last Answer : Answer: D

Description : If both Stirling and Carnot cycles operate within the same temperature limits, then efficiency of Stirling cycle as compared to Carnot cycle  (a) more  (b) less  (c) equal  (d) depends on other factors  (e) none of the above.

Last Answer : Answer : c

Description : For same compression ratio and heat input a. Otto cycle is more efficient b. Diesel cycle is more efficient c. Both are equally efficient d. None of the above

Last Answer : ANSWER a. Otto cycle is more efficient

Description : The efficiency of Diesel cycle depends upon  A. temperature limits  B. pressure ratio  C. compression ratio  D. cut-off ratio and compression ratio

Last Answer : Answer: D

Description : When cut-off ratio is __________ the efficiency of Diesel cycle approaches to Otto cycle efficiency.  A. zero  B. 1/5  C. 4/5  D. 1

Last Answer : Answer: A

Description : The efficiency of Diesel cycle approaches to Otto cycle efficiency when  A. cut-off is increased  B. cut-off is decreased  C. cut-off is zero  D. cut-off is constant

Last Answer : Answer: C

Description : A diesel engine is usually more efficient than a spark ignition engine because a. Diesel being a heavier hydrocarbon, release more heat per kg than gasoline b. The air standard efficiency of diesel ... an Spark ignition engine d.Self ignition temperature of diesel is higher than that of gasoline.

Last Answer : ANSWER c. The compression ratio of a diesel engine is higher than that of an S.I engine

Description : A Bell-Coleman cycle is a reversed of which the following cycles?  a. Stirling cycle  b. Joule cycle  c. Carnot cycle  d. Otto cycle

Last Answer : Joule cycle

Description : For same compression ratio a. Diesel cycle has lower efficiency than Otto cycle b. Diesel cycle has higher efficiency than Otto cycle c. Diesel cycle and Otto cycle have equal efficiencies d. Depends upon the load on engine

Last Answer : Answer a. Diesel cycle has lower efficiency than Otto cycle

Description : Air standard Otto cycle is more efficient than the diesel cycle for the same (A) Heat addition & compression ratio (B) Heat addition & pressure (C) Compression ratio & pressure (D) Cylinder dimension & rpm

Last Answer : (A) Heat addition & compression ratio

Description : For the same peak pressure and heat input a. Otto cycle is more efficient b. Diesel cycle is more efficient c. Both are equally efficient d. None of the above

Last Answer : ANSWER b. Diesel cycle is more efficient

Description : It is used for gas turbines which operates on an open cycle where both the compression and expansion processes take place in rotating machinery.  a. Dual Cycle  b. Otto Cycle  c. Carnot Cycle  d. Brayton Cycle

Last Answer : Brayton Cycle

Description : What states that thermal efficiencies of all reversible heat engines operating between the same two reservoirs are the same and that no heat engine is more efficient than a reversible one operating between the ... A. Ericson principle  B. Carnot principle  C. Otto principle  D. Stirling principle

Last Answer : Carnot principle

Description : Gasoline and Diesel Engines are best described by the _________.  a. Otto Cycle  b. Burnign Cycle  c. Shikki Cycle  d. Shapa R’ Elli Cycle

Last Answer : Otto Cycle

Description : A cycle consisting of one constant pressure, one constant volume and two isentropic processes is known as  A.Carnot cycle  B.Stirling cycle  C.Otto cycle  D.Diesel cycle

Last Answer : Answer: D

Description : The most efficient cycle that can operate between two constant temperature reservoir is the _________.  a. Otto Cycle  b. Lazare Cycle  c. Isothermal Cycle  d. Carnot Cycle

Last Answer : Carnot Cycle

Description : What is the highest efficiency of heat engine operating between the two thermal energy reservoirs at temperature limits?  A. Ericson efficiency  B. Otto efficiency  C. Carnot efficiency  D. Stirling efficiency

Last Answer : Carnot efficiency

Description : The efficiency of a dual combustion cycle __________ upon cut-off ratio.  A. depends  B. does not depend

Last Answer : Answer: A

Description : Pick out the correct statement. (A) Compression ratio of an Otto engine is comparatively higher than a diesel engine (B) Efficiency of an Otto engine is higher than that of a diesel ... Diesel engine normally operates at lower compression ratio than an Otto engine for an equal output of work

Last Answer : (B) Efficiency of an Otto engine is higher than that of a diesel engine for the same compression ratio

Description : Which of the following engines was introduced by a German engineer, Nickolas Otto?  a. Gasoline engine  b. Diesel engine  c. Gas turbine  d. Thermal engine

Last Answer : Gasoline engine

Description : Carnot cycle has maximum efficiency for  (a) reversible engine  (b) irreversible engine  (c) new engine  (d) petrol engine  (e) diesel engine.

Last Answer : Answer : a

Description : The efficiency of Diesel cycle increases with  A. decrease in cut-off  B. increase in cut-off  C. constant cut-off  D. none of these

Last Answer : Answer: A

Description : In order that a cycle be reversible, following must be satisfied  (a) free expansion or friction resisted expansion/compression process should not be encountered  (b) when heat is being absorbed, temperature of hot ... sub-stance should be same  (d) all of the above  (e) none of the above.

Last Answer : Answer : d

Description : The compression ratio for Diesel engines is  A. 3 to 6  B. 5 to 8  C. 15 to 20  D. 20 to 30

Last Answer : Answer: C

Description : Carnot cycle efficiency depends upon  (a) properties of the medium/substance used  (b) condition of engine  (c) working condition  (d) temperature range of operation  (e) effectiveness of insulating material around the engine.

Last Answer : Answer : d

Description : Which of the following cycles has maximum efficiency  (a) Rankine  (b) Stirling  (c) Carnot  (d) Brayton  (e) Joule.

Last Answer : Answer : c

Description : A cycle consisting of two adiabatics and two constant pressure processes is known as  (a) Otto cycle  (b) Ericsson cycle  (c) Joule cycle  (d) Stirling cycle  (e) Atkinson cycle.

Last Answer : Answer : c

Description : Otto cycle consists of following four processes  (a) two isothermals and two isentropics  (b) two isentropics and two constant volumes  (c) two isentropics, one constant volume and one constant pressure  (d) two isentropics and two constant pres-sures  (e) none of the above.

Last Answer : Answer : b

Description : Thermal power plant works on  (a) Carnot cycle  (b) Joule cycle  (d) Rankine cycle  (d) Otto cycle  (e) Brayton cycle.

Last Answer : Answer : c

Description : Which of the following is used in thermal power plant?  a. Brayton cycle  b. Reversed carnot cycle  c. Rankine cycle  d. Otto cycle

Last Answer : Rankine cycle

Description : Otto cycle is also known as  A. constant pressure cycle  B. constant volume cycle  C. constant temperature cycle  D. constant temperature and pressure cycle

Last Answer : Answer: B

Description : The efficiency of an Otto engine compared to that of a diesel engine, for the same compression ratio will be (A) More (B) Less (C) Same (D) Data insufficient to predict

Last Answer : (A) More

Description : Which of the following cycles is not a reversible cycle  (a) Carnot  (b) Ericsson  (c) Stirling  (d) Joule  (e) none of the above.

Last Answer : Answer : e

Description : During which of the following process does heat rejection takes place in Carnot cycle?  A. Isothermal expansion  B. Isentropic expansion  C. Isothermal compression  D. Isentropic compression

Last Answer : Answer: C

Description : The ideal efficiency of a Brayton cycle with regeneration, with increase in pressure ratio will  (a) increase  (b) decrease  (c) remain unchanged  (d) increase/decrease depending on ap-plication  (e) unpredictable. “

Last Answer : Answer : b

Description : The efficiency of the Otto cycle is independent of a. Heat supplied b. Compression ratio c. Ratio of specific heats d. None of the above

Last Answer : Answer a. Heat supplied

Description : The index of compression n tends to reach ratio of specific heats y when  (a) flow is uniform and steady  (b) process is isentropic  (c) process is isothermal  (d) process ... specific heat does not change with temperature  (e) process is isentropic and specific heat changes with temperature.

Last Answer : Answer : d

Description : What is a heat engine that operates on the reversible Carnot cycle called?  A. Carnot heat engine  B. Ideal heat engine  C. Most efficient heat engine  D. Best heat engine

Last Answer : Carnot heat engine

Description : The efficiency and work ratio of a simple gas turbine cycle are  A.low  B.very low  C.high  D.very high

Last Answer : Answer: B

Description : Which of the following engines is the most efficient?  a. Gas turbine  b. Diesel engine  c. Carnot engine  d. Gasoline engine

Last Answer : Carnot engine

Description : Which of the following is least efficient?  a. Gas turbine  b. Diesel engine  c. Carnot engine  d. Gasoline engine

Last Answer : Gasoline engine

Description : Which of the following engines is the most efficient?  a. Isobaric expansion  b. Adiabatic compression  c. Adiabatic expansion  d. Isothermal expansion

Last Answer : Isobaric expansion

Description : An actual engine is to be designed having same efficiency as the Carnot cycle. Such a proposition is  (a) feasible  (b) impossible  (c) possible  (d) possible, but with lot of sophistications  (e) desirable.

Last Answer : Answer : d

Description : Which of the following best describes both Stirling and Ericson engines?  a. Internal combustion engine  b. External combustion engine  c. Diesel cycle  d. Rankine cycle

Last Answer : External combustion engine

Description : Diesel cycle consists of following four processes  (a) two isothermals and two isentropics  (b) two isentropics, and two constant volumes.  (c) two isentropics, one constant volume and one constant pressure  (d) two isentropics and two constant pressures  (e) none of the above.

Last Answer : Answer : c

Description : The thermal efficiency of a diesel cycle having fixed compression ratio with increase in cut-off ratio will a. increase b. decrease c. independent d. increase or decrease depending upon other factors

Last Answer : ANSWER b. decrease

Description : What is the ratio of the useful heat extracted to heating value?  A. Combustion efficiency  B. Phase efficiency  C. Heat efficiency  D. Work efficiency

Last Answer : Combustion efficiency

Description : Thermal efficiency is the ratio of:  A. Network input to total heat input  B. Network output to total heat output  C. Network output to total heat input  D. Network input to total heat output

Last Answer : Network output to total heat input

Description : The efficiency of a Carnot engine depends on  (a) working substance  (b) design of engine  (c) size of engine  (d) type of fuel fired  (e) temperatures of source and sink.

Last Answer : Answer : e

Description : In otto cycle compression ratio is 8. Calculate air standard efficiency. Will it be grater than Carnot Cycle ? Justify your answer. 

Last Answer : No, the Otto cycle efficiency 56.47% will always be lower than Carnot cycle efficiency. Justification: Carnot theorem states that keeping operating conditions same, Carnot engine is more efficient than any other engine. So, Otto cycle efficiency is lower than Carnot cycle efficiency.