The efficiency of Diesel cycle depends upon  A. temperature limits  B. pressure ratio  C. compression ratio  D. cut-off ratio and compression ratio

1 Answer

Answer :

Answer: D

Related questions

Description : For same compression ratio and for same heat added  (a) Otto cycle is more efficient than Diesel cycle  (b) Diesel cycle is more efficient than Otto cycle  (c) efficiency depends on other factors  (d) both Otto and Diesel cycles are equally efficient  (e) none of the above.

Last Answer : Answer : a

Description : The efficiency of a dual combustion cycle __________ upon cut-off ratio.  A. depends  B. does not depend

Last Answer : Answer: A

Description : Otto cycle efficiency is higher than Diesel cycle efficiency for the same compression ratio and heat input because in Otto cycle  A. combustion is at constant volume  B. expansion and compression are isentropic  C. maximum temperature is higher  D. heat rejection is lower

Last Answer : Answer: D

Description : When cut-off ratio is __________ the efficiency of Diesel cycle approaches to Otto cycle efficiency.  A. zero  B. 1/5  C. 4/5  D. 1

Last Answer : Answer: A

Description : If both Stirling and Carnot cycles operate within the same temperature limits, then efficiency of Stirling cycle as compared to Carnot cycle  (a) more  (b) less  (c) equal  (d) depends on other factors  (e) none of the above.

Last Answer : Answer : c

Description : The efficiency of Diesel cycle increases with  A. decrease in cut-off  B. increase in cut-off  C. constant cut-off  D. none of these

Last Answer : Answer: A

Description : The efficiency of Diesel cycle approaches to Otto cycle efficiency when  A. cut-off is increased  B. cut-off is decreased  C. cut-off is zero  D. cut-off is constant

Last Answer : Answer: C

Description : Carnot cycle efficiency depends upon  (a) properties of the medium/substance used  (b) condition of engine  (c) working condition  (d) temperature range of operation  (e) effectiveness of insulating material around the engine.

Last Answer : Answer : d

Description : The thermal efficiency of a diesel cycle having fixed compression ratio with increase in cut-off ratio will a. increase b. decrease c. independent d. increase or decrease depending upon other factors

Last Answer : ANSWER b. decrease

Description : For same compression ratio a. Diesel cycle has lower efficiency than Otto cycle b. Diesel cycle has higher efficiency than Otto cycle c. Diesel cycle and Otto cycle have equal efficiencies d. Depends upon the load on engine

Last Answer : Answer a. Diesel cycle has lower efficiency than Otto cycle

Description : The efficiency of Diesei cycle with decrease in cut off  (a) increases  (b) decreases  (c) remains unaffected  (d) first increases and then decreases  (e) first decreases and then increases.

Last Answer : Answer : a

Description : Carnot cycle has maximum efficiency for  (a) reversible engine  (b) irreversible engine  (c) new engine  (d) petrol engine  (e) diesel engine.

Last Answer : Answer : a

Description : The compression ratio for Diesel engines is  A. 3 to 6  B. 5 to 8  C. 15 to 20  D. 20 to 30

Last Answer : Answer: C

Description : What is the highest efficiency of heat engine operating between the two thermal energy reservoirs at temperature limits?  A. Ericson efficiency  B. Otto efficiency  C. Carnot efficiency  D. Stirling efficiency

Last Answer : Carnot efficiency

Description : The ideal efficiency of a Brayton cycle with regeneration, with increase in pressure ratio will  (a) increase  (b) decrease  (c) remain unchanged  (d) increase/decrease depending on ap-plication  (e) unpredictable. “

Last Answer : Answer : b

Description : Which is the incorrect statement about Carnot cycle?  A. It is used as the alternate standard of comparison of all heat engines.  B. All the heat engines are based on Carnot cycle.  C. It provides concept of maximising work output between the two temperature limits.  D. all of the above

Last Answer : Answer: B

Description : A cycle consisting of one constant pressure, one constant volume and two isentropic processes is known as  A.Carnot cycle  B.Stirling cycle  C.Otto cycle  D.Diesel cycle

Last Answer : Answer: D

Description : Diesel cycle consists of following four processes  (a) two isothermals and two isentropics  (b) two isentropics, and two constant volumes.  (c) two isentropics, one constant volume and one constant pressure  (d) two isentropics and two constant pressures  (e) none of the above.

Last Answer : Answer : c

Description : In order that a cycle be reversible, following must be satisfied  (a) free expansion or friction resisted expansion/compression process should not be encountered  (b) when heat is being absorbed, temperature of hot ... sub-stance should be same  (d) all of the above  (e) none of the above.

Last Answer : Answer : d

Description : The efficiency and work ratio of a simple gas turbine cycle are  A.low  B.very low  C.high  D.very high

Last Answer : Answer: B

Description : Carnot cycle efficiency is maximum when  (a) initial temperature is 0°K  (b) final temperature is 0°K  (c) difference between initial and final temperature is 0°K  (d) final temperature is 0°C  (e) initial temperature is minimum possible.

Last Answer : Answer : b

Description : The index of compression n tends to reach ratio of specific heats y when  (a) flow is uniform and steady  (b) process is isentropic  (c) process is isothermal  (d) process ... specific heat does not change with temperature  (e) process is isentropic and specific heat changes with temperature.

Last Answer : Answer : d

Description : Which of the following best describes both Stirling and Ericson engines?  a. Internal combustion engine  b. External combustion engine  c. Diesel cycle  d. Rankine cycle

Last Answer : External combustion engine

Description : Which of the following cycle is used in vapor cycle power plant?  a. Brayton cycle  b. Diesel cycle  c. Ericson cycle  d. Rankine cycle

Last Answer : Rankine cycle

Description : Gasoline and Diesel Engines are best described by the _________.  a. Otto Cycle  b. Burnign Cycle  c. Shikki Cycle  d. Shapa R’ Elli Cycle

Last Answer : Otto Cycle

Description : It is used for gas turbines which operates on an open cycle where both the compression and expansion processes take place in rotating machinery.  a. Dual Cycle  b. Otto Cycle  c. Carnot Cycle  d. Brayton Cycle

Last Answer : Brayton Cycle

Description : Executes the entire cycle in just two strokes the power stroke and the compression stroke.  a. One-stroke engine  b. Two-stroke engine  c. Four-stroke engine  d. Eight-stroke engine

Last Answer : Two-stroke engine

Description : During which of the following process does heat rejection takes place in Carnot cycle?  A. Isothermal expansion  B. Isentropic expansion  C. Isothermal compression  D. Isentropic compression

Last Answer : Answer: C

Description : The efficiency of a Carnot engine depends on  (a) working substance  (b) design of engine  (c) size of engine  (d) type of fuel fired  (e) temperatures of source and sink.

Last Answer : Answer : e

Description : The ideal efficiency of a Brayton cycle without regeneration with increase ni pressure ratio will  (a) increase  (b) decrease  (c) remain unchanged  (d) increase/decrease depending on application  (e) unpredictable.

Last Answer : Answer : a

Description : A manufacturer claims to have a heat engine capable of developing 20 h.p. by receiving heat input of 400 kcal/mt and working between the temperature limits of 227° C and 27° C. His claim is  ( ... be possible with lot of sophistications  (d) cost will be very high  (e) theroretically possible.

Last Answer : Answer : b

Description : Which of the following can be regarded as gas so that gas laws could be applicable, within the commonly encountered temperature limits.  (a) 02, N2, steam, C02  (b) Oz, N2, water vapour  (c) S02, NH3, C02, moisture  (d) 02, N2, H2, air  (e) steam vapours, H2, C02.

Last Answer : Answer : d

Description : The efficiency of Joule cycle is  A. greater than Carnot cycle  B. less than Carnot cycle  C. equal to Carnot cycle  D. none of these

Last Answer : Answer: B

Description : The efficiency of Stirling cycle is __________ Carnot cycle.  A. greater than  B. less than  C. equal to

Last Answer : Answer: C

Description : The efficiency of Carnot cycle is maximum for  (a) gas engine  (b) well lubricated engine  (c) petrol engine  (d) steam engine  (e) reversible engine.

Last Answer : Answer : e

Description : An actual engine is to be designed having same efficiency as the Carnot cycle. Such a proposition is  (a) feasible  (b) impossible  (c) possible  (d) possible, but with lot of sophistications  (e) desirable.

Last Answer : Answer : d

Description : A _________ is a quantity whose value depends on the path followed during a particular change in state.  a. path function  b. point function  c. process  d. cycle

Last Answer : path function

Description : Vapor pressure depends only on _________.  a. pressure  b. force  c. volume  d. temperature

Last Answer : temperature

Description : Entropy change depends on  (a) heat transfer  (b) mass transfer  (c) change of temperature  (d) thermodynamic state  (e) change of pressure and volume.

Last Answer : Answer : a

Description : Extensive property of a system is one whose value  (a) depends on the mass of the system like volume  (b) does not depend on the mass of the system, like temperature, pressure, etc.  (c) is not ... the state  (d) is dependent on the path followed and not on the state  (e) is always constant.

Last Answer : Answer : a

Description : Intensive property of a system is one whose value  (a) depends on the mass of the system, like volume  (b) does not depend on the mass of the system, like temperature, pressure, etc.  (c) is not ... on the state  (d) is dependent on the path followed and not on the state  (e) remains constant.

Last Answer : Answer : b

Description : Helium ( R= 0.4698 BTU/lbm-˚R ) is compressed isothermally from 14.7 psia and 68 ˚F. The compression ratio is 1:4. Calculate the work done by the gas.  A. –1454 BTU/lbm  B. -364 BTU/lbm  C.-187BTU/lbm  D.46.7 BTU/lbm Formula: W = RT ln (V2/V1)

Last Answer : -364 BTU/lbm

Description : The compression ratio for petrol engines is  A.3 to 6  B.5 to 8  C.15 to 20  D.20 to 30

Last Answer : Answer: B

Description : Otto cycle is also known as  A. constant pressure cycle  B. constant volume cycle  C. constant temperature cycle  D. constant temperature and pressure cycle

Last Answer : Answer: B

Description : In a Carnot cycle, heat is transferred at  (a) constant pressure  (b) constant volume  (c) constant temperature  (d) constant enthaply  (e) any one of the above.

Last Answer : Answer : c

Description : Assuming compression is according to the Law PV = C, Calculate the initial volume of the gas at a pressure of 2 bars w/c will occupy a volume of 6m³ when it is compressed to a pressure of 42 Bars.  a) 130m³  b) 136m³  c) 120m³  d) 126m³ Formula: P1V1/T1 =P2V2/T2

Last Answer : 126m³

Description : A diesel engine is usually more efficient than a spark ignition engine because a. Diesel being a heavier hydrocarbon, release more heat per kg than gasoline b. The air standard efficiency of diesel ... an Spark ignition engine d.Self ignition temperature of diesel is higher than that of gasoline.

Last Answer : ANSWER c. The compression ratio of a diesel engine is higher than that of an S.I engine

Description : A process, in which the temperature of the working substance remains constant during its expansion or compression, is called  A. isothermal process  B. hyperbolic process  C. adiabatic process  D. polytropic process

Last Answer : Answer: A

Description : Which one is the correct relation between energy efficiency ratio (EER) and coefficient of performance (COP)?  A. EER = 2.34 COP  B. EER = 3.24 COP  C. EER = 3.42 COP  D. EER = 4.23 COP

Last Answer : EER = 3.42 COP

Description : What is defined as the ratio of the net electrical power output to the rate of fuel energy input?  A. Combustion efficiency  B. Thermal efficiency  C. Overall efficiency  D. Furnace efficiency

Last Answer : Overall efficiency