Two 12 ft. sections of aluminum siding are placed end to end on the outside wall of house. How large a gap should be left between the pieces to prevent buckling if the temperature can change by 55˚C?  a. 0.21 m  b. 0.18 m  c. 0.31 in  d. 0.18 in

1 Answer

Answer :

0.18 in

Related questions

Description : How many kilocalories of heat are required to heat 750 g of water from 35˚C to 55˚C.  a. 15  b. 1500  c. 1.5 x 10^4  d. 6.3 x 10^4

Last Answer : 15

Description : Two masses, one of the 10kg and the other unknown, are placed on a scale in a region where g = 9.67 m/sec2 . The combined weight of these two masses is 174.06 N. Find the unknown mass in kg.  a. 20 kg  b. 19 kg  c. 18 kg  d. 17 kg formula: m=Fg k / g

Last Answer : 18 kg

Description : A wall of the firebrick has an inside temperature of 313ºF and an outside temperature of 73ºF. What is the difference in the surface temperature in Rankin?  a. 70  b. 68  c. 72  d. 94 ºR = ºF + 460

Last Answer : 70

Description : Calculate: a. Mass flow rate in lb/hr. b. The velocity at section 2 in fps  a. 800,000lb/hr;625ft/s  b. 900,000lb/hr;625 ft/s  c. 888,000lb/hr;269 ft/s  d. 700,000lb/hr;269 ft/s m = A1V!/V1

Last Answer : 900,000 lb/hr;625 ft/s

Description : If air is at pressure, p, of 3200 lbf/ft2 , and at a temperature, T, of 800 ˚R, what is the specific volume, v? (R=5303 ft-lbf/lbm-˚R, and air can be modeled as an ideal gas.)  A.9.8 ft^3/lbm  B.11.2 ft^3/lbm  C.13.33 ft^3/lbm  D.14.2 ft^3/lbm Formula: pv = RT v = RT / p

Last Answer : 13.33 ft^3/lbm

Description : A certain gas, with cp = 0.529Btu/ lb. °Rand R = 96.2ft.lb/lb. °R, expands from 5 cu ft and 80°F to 15 cu ft while the pressure remains constant at 15.5psia. Compute for T2.  a.1520°R  b. 1620°R  c. 1720°R  d. 1820°R formula: T2= T1V2/V1

Last Answer : 1620°R

Description : A certain gas with cp = 0.529Btu/lb°R and R = 96.2ft/lbºR expands from 5 ft and 80ºF to 15 ft while the pressure remains constant at 15.5 psia.  a. T2=1.620ºR, ∫H = 122.83 Btu  b. T2 = 2°R, ∫H = 122.83 Btu  c. ... , ∫H = 122.83 Btu  d. T2 = 1°R, ∫H = 122.83 Btu T2= V2(t2)/V1 and ∫H = mcp (T2-T1)

Last Answer : T2=1.620ºR, ∫H = 122.83 Btu

Description : A certain gas, with cp = 0.529Btu/lb.°R and R = 96.2 ft.lb/lb.°R, expands from 5 cu ft and 80°F to 15 cu ft while the pressure remains constant at 15.5 psia. Compute for T2. (Formula: T2= T1V2/V1)  a. 460°R  b. 270°R  c. 1620 °R  d. None of the above

Last Answer : 1620 °R

Description : Ten cu ft. of air at 300 psia 400°F is cooled to 140°F at constant volume. What is the final pressure? (formula: p2 = p1T2/T1)  a. 0  b. 209 psia  c. - 420 psia  d. None of the above

Last Answer : 209 psia

Description : 3.0 lbm of air are contained at 25 psia and 100 ˚F. Given that Rair = 53.35 ft-lbf/lbm- ˚F, what is the volume of the container?  A.10.7 ft^3  B.14.7 ft^3  C.15 ft^3  D.24.9 ft^3 Formula: use the ideal gas law pV = mRT T = (100 +460) ˚R V = mRT/p

Last Answer : 24.9 ft^3

Description : The concrete roof of a house is 10 m by 8 m and 10 cm thick (4"). Estimate the total heat the roof would absorb over the 12 day?  a. 1.3 x 108 J  b 2.3 x 108 J  c. 3.3 x 108 J  d. 4.3 x 108 J formula: ΔQ = ΔQ/Δtx Δt

Last Answer : 1.3 x 108 J

Description : How much will the length of a 1.0 km section of concrete highway change if the temperature varies from -15˚C in winter to 41˚C in summer?  a. 0.67 m  b. 2.2 m  c. 3.1 m  d. 0.47 m

Last Answer : 0.67 m

Description : Solids and liquids have  (a) one value of specific heat (ft) two values of specific heat  (c) three values of specific heat  (d) no value of specific heat  (e) one value under some conditions and two values under other conditions.

Last Answer : Answer : a

Description : Twenty grams of ice at 0˚C melts to water at 0˚C. How much does the entropy of the 20g change in this process?  a. 30.5 J/K  b. 24.6 J/K  c. 21.3 J/K  d. 15.7 J/K

Last Answer : 24.6 J/K

Description : The flow energy of 5 ft3 of a fluid passing a boundary to a system is 80,000 ft-lb. Determine the pressure at this point.  a. 222 psi  b. 333 psi  c. 444 psi  d. 111 psi formula: Ef= pV

Last Answer : 111 psi

Description : Ten cu. ft of air at 300psia and 400°F is cooled to 140°F at constant volume. What is the transferred heat?  a.-120Btu  b. -220Btu  c.-320Btu  d. -420Btu formula: Q= mcv(T2-T1)

Last Answer : -420Btu

Description : A vertical column of water will be supported to what height by standard atmospheric pressure. If the Y w = 62.4lb/ft3 po = 14.7 psi.  a. 44.9 ft  b. 33.9 ft  c. 22.9 ft  d. 55.9 ft formula: ho= po/Yw

Last Answer : 33.9 ft

Description : A vertical column of water will be supported to what height by standard atmospheric pressure.  a. 33.9 ft  b. 45 ft  c. 67 ft  d. 25.46 ft ho= Po/Yo

Last Answer : 33.9 ft

Description : What horse power is required to isothermally compress 800 ft^3 of Air per minute from 14.7 psia to 120 psia?  A. 28 hp  B.108 hp  C.256 hp  D.13900 hp Formula: W= p1V1 ln (p1/p2) Power = dW / dt

Last Answer : 108 hp

Description : A problem Drum ( 3 ft. diameter ; 6 ft. height ) is field with a fluid whose density is 50 lb/ft^3. Determine the total volume of the fluid.  A. 42.41 ft^3  B.44.35 ft^3  C.45.63 ft^3  D.41.23 ft^3 Formula: Vf = (pi d^2 h) / 4

Last Answer : 42.41 ft^3

Description : Steam at 1000 lbf/ft^2 pressure and 300˚R has specific volume of 6.5 ft^3/lbm and a specific enthalpy of 9800 lbf-ft/lbm. Find the internal energy per pound mass of steam.  A.2500 lbf-ft/lbm  B.3300 lbf-ft/lbm  C.5400 lbf-ft/lbm  D.6900 lbf-ft/lbm Formula: h= u+ pV u= h– pV

Last Answer : 3300 lbf-ft/lbm

Description : Carnot cycle is  (a) a reversible cycle (ft) an irreversible cycle  (c) a semi-reversible cycle  (d) a quasi static cycle  (e) an adiabatic irreversible cycle.

Last Answer : Answer : a

Description : Specific heat of air at constant pressure is equal to  (a) 0.17  (b) 0.21  (c) 0.24  (d) 1.0  (e) 1.41

Last Answer : Answer : c

Description : Gas is enclosed in a cylinder with a weighted piston as the stop boundary. The gas is heated and expands from a volume of 0.04 m^3 to 0.10 m^3 at a constant pressure of 200kPa.Calculate the work done by the system.  A. 8 kJ  B. 10 kJ  C.12 kJ  D.14 kJ Formula: W = p(V2-V1)

Last Answer : 12 kJ

Description : The door of a running refrigerator inside a room was left open. Which of the following statements is correct?  (a) The room will be cooled to the temperature inside the refrigerator.  (b) The room ... air in room will remain unaffected.  (e) any one of above is possible depending on the capacity.

Last Answer : Answer : c

Description : On volume basis, air contains following parts of oxygen  (a) 21  (b) 23  (c) 25  (d) 77  (e) 79.

Last Answer : Answer : a

Description : On weight basis, air contains following parts of oxygen  (a) 21  (b) 23  (c) 25  (d) 73  (e) 79.

Last Answer : Answer : b

Description : Refer to problem # 11. Determine the force that accelerates if to 12 m/s^2. horizontally along frictionless plane.  A. 2474.23 N  B. 2574.23 N  C. 3474.23 N  D. 2374.23 N Formula : M = wk / g F = ma /k

Last Answer : 2474.23 N

Description : A system weighing 2kN. Determine the force that accelerate if to 12 m/s^2. a. vertically upward when g = 9.7 m/s^2  A. 4474.23 N  B.5484.23 N  C.4495.23 N  D.5488.23 N Formula: F = m/k (a +g)

Last Answer : 4474.23 N

Description : If value of n is infinitely large in a polytropic process pV” = C, then the process is known as constant  (a) volume  (b) pressure  (c) temperature  (d) enthalpy  (e) entropy

Last Answer : Answer : a

Description : Water (specific heat cv= 4.2 kJ/ kg ∙ K ) is being heated by a 1500 W h eater. What is the rate of change in temperature of 1kg of the water?  A. 0.043 K/s  B. 0.179 K/s  C. 0.357 K/s  D. 1.50 K/s Formula: Q = mcv ( T)

Last Answer : 0.179 K/s

Description : Find the change in internal energy of 5 lb. of oxygen gas when the temperature changes from 100 ˚F to 120 ˚F. CV = 0.157 BTU/lbm-˚R  A.14.7 BTU  B.15.7 BTU  C. 16.8 BTU  D. 15.9 BTU Formula: U= mcv T

Last Answer : 15.7 BTU

Description : Anything that is outside the system boundary is called ________.  a. Surrounding  b. Natural Environment  c. Closed System  d. Open System

Last Answer : Surrounding

Description : The pressure gauge on a 2000 m³ tank of oxygen gas reads 600 kPa. How much volumes will the oxygen occupied at pressure of the outside air 100 kPa?  a) 14026.5 m³  b) 15026.5 m³  c) 13026.5 m³  d) 16026.5 m³ Formula: P1V1/T1 =P2V2/T2

Last Answer : 14026.5 m³

Description : What form of energy refers to those a system possesses as a whole with respect to some outside reference frame, such as potential and kinetic energies?  A. Macroscopic form of energy  B. Microscopic form of energy  C. Internal energy  D. External energy

Last Answer : Macroscopic form of energy

Description : What is the mass or region outside the system called?  A. Surroundings  B. Boundary  C. Volume  D. Environment

Last Answer : Surroundings

Description : Utilizing the answer to the previous problem, estimate the overall or average increase in temperature ( ΔT) of the concrete roof from the energy absorbed from the sun during a12hour day. Assume that all of the radiation absorbed goes into ... °C  b. 8.9°C  c. 9.9°C  d. 10.9°C formula: ΔQ = m c ΔT

Last Answer : 7.9 °C

Description : The heat supplied to the gaS at constant volume is (where m = Mass of gas, cv = Specific heat at constant volume, cp = Specific heat at constant pressure, T2 – T1 = Rise in temperature, and R = Gas constant)  A. mR(T2 – T1)  B. mcv(T2 – T1)  C. mcp(T2 – T1)  D. mcp(T2 + T1)

Last Answer : Answer: B

Description : A 600kg hammer of a pile driver is lilted 2m the pilling head. What is the change of potential energy? If the hammer is realest. What will be its velocity and the instant if it sticks the pilling?  a. 10,772 N-m and 5.26m/s ...  c. 11,772 N-m and 6.26m/s  d. 11,77 2N-m and5.26m/s ∫PE = mgo(∫Z)/gc

Last Answer : 11,772 N-m and 6.26m/s

Description : The contact surface shared by both the system and the surroundings is called _________.  a. wall  b. boundary  c. interface  d. intersection

Last Answer : boundary

Description : What is the real or imaginary surface that separates the system from its surroundings?  A. Division  B. Wall  C. Boundary  D. Interface

Last Answer : Boundary

Description : An adiabatic wall is one which  (a) prevents thermal interaction  (b) permits thermal interaction  (c) encourages thermal interaction  (d) discourages thermal interaction  (e) dos not exist.

Last Answer : Answer : a

Description : A diathermic wall is one which  (a) prevents thermal interaction  (b) permits thermal interaction  (c) encourages thermal interaction  (d) discourages thermal interaction  (e) does not exist.

Last Answer : Answer : b

Description : An ideal gas of volume 1liter and pressure 10 bar undergoes a quasistatic adiabatic expansion until the pressure drops to 1 bar. Assume γ to be 1.4 what is the final volume?  a. 3.18 l  b. 4.18 l  c. 5.18 l  d. 6.18 l

Last Answer : 5.18 l

Description : A gas is enclosed in a cylinder with a weighted piston as the top boundary. The gas is heated and expands from a volume of 0.04 m3 to 0.10 m3 at a constant pressure of 200 kPa. Find the work done on the system.  a. 5 kJ  b. 15 kJ  c. 10 kJ  d. 12 kJ

Last Answer : 12 kJ

Description : A gas is compressed in a cylinder by a movable piston to a volume onehalf its original volume. During the process 300 kJ heat left the gas and internal energy remained same. The work done on gas in Nm will be  (a) 300 Nm  (b) 300,000 Nm  (c) 30 Nm  (d) 3000 Nm  (e) 30,000 Nm.

Last Answer : Answer : b

Description : Calculate the power output in horsepower of an 80-kg man that climbs a flight of stairs 3.8 m high in 4.0 s.  a) 744.8 hp  b) 0.998 hp  c) 746 hp  d) 1.998 hp Formula: Power = Fd/t = mgh/t F = W = mg d = h

Last Answer : 0.998 hp

Description : Water flow to a terminal 3 mm diameter and has an average speed of 2 m/s. What is the rate of flow in cubic meter/mm?  a. 0.0001m³/min  b. 0.076 m³/min  c. 0.085 m³/min  d. 0.097 m³/min

Last Answer : 0.085 m³/min

Description : A certain fluid is flowing in a 0.5m x 0.3 channel at the rate of 3 m/s and has a specific volume of 0.012 m³/kg. Determined the mass of water flowing in kg/s.  a. 267 kg/s  b. 378 kg/s  c. 375 kg/s  d. 456.5 kg/s m = Aν/V

Last Answer : 375 kg/s

Description : In the above problem, compute for the mass. (Formula: m = p1V1 / RT1)  a. 0.2148 lb  b. 0.2134 lb  c. 0.1248 lb  d. None of the above

Last Answer : 0.2148 lb