High Voltage DC (HVDC) transmission is mainly used for 

(A) bulk power transmission over very long distances (C) inter-connecting two systems with same nominal frequency (C) eliminating reactive power requirement in the operation (D) minimizing harmonics at the converter stations

1 Answer

Answer :

High Voltage DC (HVDC) transmission is mainly used for bulk power transmission over very long distances 

Related questions

Description : Choose two appropriate auxiliary components of a HVDC transmission system from the following P. D.C line inductor Q. A.C line inductor R. Reactive power sources S. Distance relays on D.C line T. Series capacitance on A.C. line  (A) P and Q (B) P and R (C) Q and S (D) S and T

Last Answer : Choose two appropriate auxiliary components of a HVDC transmission system from the following P. D.C line inductor Q. A.C line inductor R. Reactive power sources S. Distance relays on D.C line T. Series capacitance on A.C. line  (A) P and Q (B) P and R (C) Q and S (D) S and T

Description : An HVDC link consist of rectifier, inverter transmission line and other equipments. Which one of the following is true for this link ?  (A) The transmission line produces/ supplies ... ) Both the converters (rectifier and inverter) consume reactive power from the respective connected AC systems

Last Answer : An HVDC link consist of rectifier, inverter transmission line and other equipments. Which one of the following is true for this link ?  (A) The transmission line produces/ supplies ... ) Both the converters (rectifier and inverter) consume reactive power from the respective connected AC systems

Description : Limitation and application of High Voltage DC (HVDC)

Last Answer : Limitation and application of High Voltage DC (HVDC) :  Limitation:- 1) It is difficult to step up and step down DC voltage like AC voltage. 2) Special cooling ... conventional/non-conventional) 12) Increasing existing grid utilization. 13) Interconnection of different grids or networks

Description : In voltage source converter based HVDC transmission system the active power is controlled by changing (A) phase angle of the converter ac input voltage (B) supply frequency of the converter ac input voltage (C) magnitude of the converter ac input voltage (D) DC voltage at the inverter terminals

Last Answer : In voltage source converter based HVDC transmission system the active power is controlled by changing phase angle of the converter ac input voltage

Description : HVDC transmission line in India: 

Last Answer : HVDC transmission line in India:  S.N .  From To  Voltage 1 Rihand (U.P) (from 1990) Dadri +- 500 KV (bipolar) 2 Talcher- is the biggest ... (Chandrapur) Western Region  140KV   8 Connecting Southern region(Vizag- Gajuwaka) Eastern Region 140KV 

Description : HVDC transmission is preferred to EHV AC because  (a) HVDC terminal equipments are inexpensive  (b) VAR compensation is not required in HVDC systems  (c) System stability can be improved  (d) Harmonic problem is avoided 

Last Answer : C- system stability can be improved

Description : Which of the following is TRUE with respect to HVDC transmission line? (A) For a short distance it is economical over HVAC. (B) In HVDC system, harmonics are not generated. (C) Use of HVDC can improve system stability. (D) Less and cheap terminal, equipments are required in HVDC.

Last Answer : Which of the following is TRUE with respect to HVDC transmission line? (A) For a short distance it is economical over HVAC. (B) In HVDC system, harmonics are not generated. (C) Use of HVDC can improve system stability. (D) Less and cheap terminal, equipments are required in HVDC.

Description : Bulk power transmission over long HVDC lines is preferred because of

Last Answer : Bulk power transmission over long HVDC lines is preferred because of Low cost of HVDC terminal

Description : For an existing ac transmission line, the string efficiency is 80%, if dc voltage is supplied for the same setup, the string efficiency will be?

Last Answer : 100%

Description : In a DC transmission line?

Last Answer : In a DC transmission line there are no effects due to inductive and capacitive reactances.

Description : For a fixed value of complex power flow in a transmission line having a sending and voltage V, the real power loss will be proportional to  A) V B) v2 C) 1/V2 D)1/V

Last Answer : For a fixed value of complex power flow in a transmission line having a sending and voltage V, the real power loss will be proportional to 1/V2

Description : A 100 km transmission line is designed for a nominal voltage of 132 kV and consists of one conductor per phase. The line reactance is 0.726 ohm/km. The static transmission capacity of the line, in MW, would be   (a) 240 (b) 132 (c) 416 (d) 720

Last Answer : A 100 km transmission line is designed for a nominal voltage of 132 kV and consists of one conductor per phase. The line reactance is 0.726 ohm/km. The static transmission capacity of the line, in MW, would be 240 

Description : Bundled conductors are mainly used in high voltage overhead transmission lines to (a) Reduce line loss (c) Reduce corona (b) Reduce harmonics (d) Increase strength

Last Answer : Bundled conductors are mainly used in high voltage overhead transmission lines to Reduce corona 

Description : In case of a ‘High Voltage DC’ transmission, how many minimum conductors are required?

Last Answer : In case of a ‘High Voltage DC’ transmission, how many minimum conductors are required? one

Description : In order to reduce the harmful effects of harmonics on the AC side of a high voltage DC transmission system_____ are provided. (A) synchronous condensers (B) shunt capacitors (C) shunt filters (D) static compensators

Last Answer : In order to reduce the harmful effects of harmonics on the AC side of a high voltage DC transmission system shunt filters are provided. 

Description : A homo-polar HVDC link consists of (A) single-conductor with positive polarity (B) two conductors with one positive and another negative polarity (C ) two conductors having the same polarity with a ground return (D) single conductor with negative polarity and ground as positive polarity 

Last Answer : two or more conductore having same  polarity,usually nagative . and ground return  ex: 1st conductore drain Id1 and 2nd  drain Id2 than the return will be (Id1+Id2)

Description : What are the advantages of HVDC?

Last Answer : HVDC have following advantages : 1. Improved stability. 2. Fast control of power flow. 3. Only two conductor is required. 4. If we use ground as return then only ... conductor can be use because skin effect is absent in HVDC . These are some advantages of HVDC.

Description : A DC reactor is connected in series with each pole of a converter station in order to: A) prevent commutation failures in the inverter B) supply reactive power to the converter C) improve system stability D) increase the power transfer capability

Last Answer : A DC reactor is connected in series with each pole of a converter station in order to:  prevent commutation failures in the inverter

Description : The function of the earth wire in an extra high voltage line is to?

Last Answer : The function of the earth wire in an extra high voltage line is to provide a shield to the phase conductors from direct lightning stroke.

Description : A 20-MVA, 6.6-kV, 3-phase alternator is connected to a 3-phase transmission line. The per unit positive-sequence, negative-sequence and zero-sequence impedances of the alternator are j0.1, j0.1 and j0.04 respectively. The neutral of ... the fault is  (A) 513.8 V (B) 889.9 V (C) 1112.0 V (D) 642.2 V

Last Answer : A 20-MVA, 6.6-kV, 3-phase alternator is connected to a 3-phase transmission line. The per unit positive-sequence, negative-sequence and zero-sequence impedances of the alternator are j0.1, ... line. The voltage of the alternator neutral with respect to ground during the fault is 642.2 V

Description : A 800 kV transmission line is having per phase line inductance of 1.1 mH/km and per phase line capacitance of 11.68 nF/km. Ignoring the length of the line, its ideal power transfer capability in MW is (A) 1204 MW (B) 1504 MW (C) 2085 MW (D) 2606 MW

Last Answer : A 800 kV transmission line is having per phase line inductance of 1.1 mH/km and per phase line capacitance of 11.68 nF/km. Ignoring the length of the line, its ideal power transfer capability in MW is 2085 MW

Description : The transmission line distance protection relay having the property of being inherently directional is (A) impedance relay (B) MHO relay (C) OHM relay (D) reactance relay

Last Answer : The transmission line distance protection relay having the property of being inherently directional is MHO relay

Description : An 800 kV transmission line has a maximum power transfer capacity of P. If it is operated at 400 kV with the series reactance unchanged, the new maximum power transfer capacity is approximately (A) P (B) 2P (C) P / 2 (D) P / 4

Last Answer : An 800 kV transmission line has a maximum power transfer capacity of P. If it is operated at 400 kV with the series reactance unchanged, the new maximum power transfer capacity is approximately P / 4

Description : A generator is connected through a 20 MVA, 13.8/138 kV step down transformer, to a transmission line. At the receiving end of the line a load is supplied through a step down transformer of 10 MVA, 138/69 kV rating. A 0.72 ... load (in per unit) in generator will be (A) 36 (B) 1.44 (C) 0.72 (D) 0.18

Last Answer : A generator is connected through a 20 MVA, 13.8/138 kV step down transformer, to a transmission line. At the receiving end of the line a load is supplied through a step down transformer of 10 MVA, 138/ ... MVA and 69 kV in load circuit, the value of the load (in per unit) in generator will be 36 

Description : A loss less transmission line having Surge Impedance Loading (SIL) of 2280 MW is provided with a uniformly distributed series capacitive compensation of 30%. Then, SIL of the compensated transmission line will be (A) 1835 MW (B) 2280 MW (C) 2725 MW (D) 3257 MW

Last Answer : A loss less transmission line having Surge Impedance Loading (SIL) of 2280 MW is provided with a uniformly distributed series capacitive compensation of 30%. Then, SIL of the compensated transmission line will be 2280 MW

Description : For enhancing the power transmission in along EHV transmission line, the most preferred method is to connect a  (A) Series inductive compensator in the line (B) Shunt inductive compensator at the ... (C) Series capacitive compensator in the line (D) Shunt capacitive compensator at the sending end

Last Answer : For enhancing the power transmission in along EHV transmission line, the most preferred method is to connect a Series capacitive compensator in the line

Description : A cylinder rotor generator delivers 0.5 pu power in the steady-state to an infinite bus through a transmission line of reactance 0.5 pu. The generator no-load voltage is 1.5 pu and the infinite bus voltage is 1 pu. The ... fault at the generator terminal is  (A) 53.5 (B) 60.2 (C) 70.8 (D) 79.6

Last Answer : A cylinder rotor generator delivers 0.5 pu power in the steady-state to an infinite bus through a transmission line of reactance 0.5 pu. The generator no-load voltage is 1.5 pu and the ... clearing angle, in degrees, for a three-phase dead short circuit fault at the generator terminal is 79.6

Description : Which of the two generalized constants of a transmission line are equal?  (a) B & C (B) A & B (c) A & D (D) B & D

Last Answer : Which of the two generalized constants of a transmission line are equal?  (a) B & C (B) A & B (c) A & D (D) B & D

Description : Series capacitive compensation in EHV transmission line is used to

Last Answer : To maintain voltage stability 

Description : The power flow problem mathematical model for a linear transmission network (A) is non-linear (B) is linear (C) considers time variation of generation (D) does not consider tap-changing transformers

Last Answer : The power flow problem mathematical model for a linear transmission network is non-linear

Description : Corona loss in transmission lines can be reduced by (A) using small diameter conductors (B) using bundled conductors (C) using less spacing between conductors (D) increasing the transmission line voltage

Last Answer : Corona loss in transmission lines can be reduced by using bundled conductors

Description : The sending end and receiving end voltages of a three-phase transmission line are 10 kV/ph and 9.5 kV/ph, respectively. If the resistance drop is 150 V/ph and receiving end power factor is 0.8, the sending end power factor is (A) 0.745 lagging (B) 0.775 lagging (C) 0.8 lagging (D) 0.85 lagging

Last Answer : Vscos¢s-Vrcos¢r=IR

Description : Precise control of reactive current flow entering the transmission and distribution systems can be minimized by using (A) synchronous condenser (B) static VAR capacitor (C) capacitor bank (D) thyristor switched reactor in parallel with capacitor

Last Answer : Precise control of reactive current flow entering the transmission and distribution systems can be minimized by using (A) synchronous condenser (B) static VAR capacitor (C) capacitor bank (D) thyristor switched reactor in parallel with capacitor

Description : If a 5-bus test system contains 6 transmission lines and one transformer, how many non-zero elements are there in the system Y-bus ? (A) 25 (B) 12 (C) 11 (D) 19

Last Answer : If a 5-bus test system contains 6 transmission lines and one transformer, 19 non-zero elements are there in the system Y-bus.

Description : The transmission line feeding power on either side of the main transmission line is called?

Last Answer : The transmission line feeding power on either side of the main transmission line is called Secondary transmission.

Description : For a transmission line with negligible losses, the lagging reactive power (VAR) delivered at The receiving end, for a given receiving end voltage, is directly proportional to the?

Last Answer : For a transmission line with negligible losses, the lagging reactive power (VAR) delivered at The receiving end, for a given receiving end voltage, is directly proportional to the line voltage drop.

Description : A long overhead transmission line is terminated by its characteristic impedance. Under this operating condition, the ratio of the voltage to the current at different points along the line will?

Last Answer : A long overhead transmission line is terminated by its characteristic impedance. Under this operating condition, the ratio of the voltage to the current at different points along the line will progressively increase from the receiving end to the sending end.

Description : The time taken for a surge to travel a 600 km long overhead transmission line is?

Last Answer : The time taken for a surge to travel a 600 km long overhead transmission line is 0.002s.

Description : A lossless radial transmission line with surge impedance loading?

Last Answer : A lossless radial transmission line with surge impedance loading takes negative VAr at sending end and zero VAr at receiving end.

Description : The line conductor of a transmission line has an overall diameter of 19.53 mm, weight 0.844 kg/m and an ultimate breaking strength of 7950 kg. If the factor of safety is to be 2, when conductor ... .5 kg/m. What is the vertical sag, corresponding to this loading for a 300 m span level supports?

Last Answer : The line conductor of a transmission line has an overall diameter of 19.53 mm, weight 0.844 kg/m and an ultimate breaking strength of 7950 kg. If the factor of safety is to be 2, when conductor ... 5 kg/m. 5.22 m is the vertical sag, corresponding to this loading for a 300 m span level supports.

Description : An overhead transmission line has a span of 240m between level supports. What is the maximum sag if the conductor weight 727 kg/km and has a breaking strength of 6880 kg? Allow the factor of safety of 2. Neglecting wind and ice loading.

Last Answer : An overhead transmission line has a span of 240m between level supports. 1.52 m is the maximum sag if the conductor weight 727 kg/km and has a breaking strength of 6880 kg? Allow the factor of safety of 2. Neglecting wind and ice loading.

Description : A transmission line conductor at a river crossing is supported from two towers at height. of 30 m and 90m, above water level. The horizontal distance between the towers is 270m, if the tension in ... . What is the clearance between the conductor and the water at a point midway between the towers?

Last Answer : A transmission line conductor at a river crossing is supported from two towers at height. of 30 m and 90m, above water level. The horizontal distance between the towers is 270m, if the tension ...  54.94 m is the clearance between the conductor and the water at a point midway between the towers.

Description : If in a short transmission line, resistance and inductance are found to be equal and regulation appear. to be zero, then the load will?

Last Answer : If in a short transmission line, resistance and inductance are found to be equal and regulation appear. to be zero, then the load will be 0.707 lagging.

Description : A three phase overhead transmission line has its conductors horizontally spaced with spacing between adjacent conductors equal to 'd'. if now the conductors of the line are rearranged to form and the equilateral triangle of sides equal to 'd' then?

Last Answer : A three-phase overhead transmission line has its conductors horizontally spaced with spacing between adjacent conductors equal to 'd'. if now the conductors of the line are rearranged to form and an equilateral triangle of sides equal to 'd' then average capacitance and inductance will increase.

Description :  A single-phase transmission line of impedance j 0.8 ohm supplies a resistive load of 500 A at 300 V. The sending end power factor is?

Last Answer :  A single-phase transmission line of impedance j 0.8 ohm supplies a resistive load of 500 A at 300 V. The sending end power factor is 0.6 lagging.

Description : A 100 km long transmission line is loaded at 110 kV.if the loss of line is 5 MW and the load is 150 MVA, the resistance of the line is?

Last Answer : P = I^2  *  R 5*10^6  = [(150*10^6) / (110*10^3)  *  R R = 2.7 ohm/phase

Description : The rated voltage of a 3-phase power system is given as  A) rms phase voltage B) Peak phase voltage C) rms line to line voltage D) Peak line to line voltage

Last Answer : The rated voltage of a 3-phase power system is given as rms line to line voltage

Description : If a voltage-controlled bus is treated as load bus, then which one of the following limits would be violated?   (a) Active power (b) Reactive power (c) Voltage (d) Phase angle 

Last Answer : If a voltage-controlled bus is treated as load bus, then which one of the following limits would be violated?   (a) Active power (b) Reactive power (c) Voltage (d) Phase angle 

Description : A single phase transformer has resistance and reactance of 0.2 pu and 0.6 pu respectively. Its pu voltage regulation at 0.8 pf lagging would he

Last Answer : A single phase transformer has resistance and reactance of 0.2 pu and 0.6 pu respectively. Its pu voltage regulation at 0.8 pf lagging would he 0.52

Description : A transformer has negative voltage regulation when its load power factor is   (1) Zero (2) Unity (3) Leading (4) Lagging

Last Answer : 0