# A single-phase transmission line of impedance j 0.8 ohm supplies a resistive...

A single-phase transmission line of impedance j 0.8 ohm supplies a resistive load of 500 A at 300 V. The sending end power factor is?

A single-phase transmission line of impedance j 0.8 ohm supplies a resistive load of 500 A at 300 V. The sending end power factor is 0.6 lagging.

## Related questions

Description : Diffecult questions

Description : The presence of standing waves on a transmission line is the result of A. a high level of attenuation on the line. B. terminating the line by a resistive load equal in value to the surge impedance ... input power to below its critical level. D. an impedance mismatch between the load and the line.

Last Answer : D. an impedance mismatch between the load and the line.

Description : Transmission lines when connected to antenna have A. capacitive load B. resistive load whose resistance is less than characteristics impedance C. resistive load at the resonant frequency D. resistive load whose resistance is greater than the characteristic impedance of the line

Description : The minimum impedance of a 75 ohm transmission line with a SWR of 2.5 is a) 100 b) 50 c) 25 d) 30

Description : The maximum impedance of a 50 ohm transmission line with SWR of 3 is a) 50/3 b) 3/50 c) 150 d) 450

Description : A load of 200 ohm is used to match 300 ohm transmission line to achieve SWR=1. Find out the required characteristic impedance of a quarter of a quarter wave transformer connected directly to the load.

Description : The input impedance of a short circuited loss less transmission line of characteristic impedance 50 Ohm is

Description : The magnitude of the open-circuit and short circuit input impedance of a transmission line are 100 ohm and 25 ohm respectively. The characteristic impedance of line is:  (1) 25 ohm (2) 50 ohm (3) 75 ohm (4) 100 ohm

Last Answer : The magnitude of the open-circuit and short circuit input impedance of a transmission line are 100 ohm and 25 ohm respectively. The characteristic impedance of line is 25 ohm.

Description : A 10 kVA, 400 V/200 V single phase transformer with 10% impedance draws a steady short-circuit line current of   (a) 250A (b) 50 A (c) 150 A (d) 350 A

Last Answer : A 10 kVA, 400 V/200 V single phase transformer with 10% impedance draws a steady short-circuit line current of 250A

Description : A loss less transmission line having Surge Impedance Loading (SIL) of 2280 MW is provided with a uniformly distributed series capacitive compensation of 30%. Then, SIL of the compensated transmission line will be (A) 1835 MW (B) 2280 MW (C) 2725 MW (D) 3257 MW

Last Answer : A loss less transmission line having Surge Impedance Loading (SIL) of 2280 MW is provided with a uniformly distributed series capacitive compensation of 30%. Then, SIL of the compensated transmission line will be 2280 MW

Last Answer : A lossless radial transmission line with surge impedance loading takes negative VAr at sending end and zero VAr at receiving end.

Description : Find the standing wave ratio, when a load impedance of 250 ohm is connected to a 75 ohm line. a) 0.3 b) 75 c) 250 d) 3.33

Description : A d.c. source has an open circuit voltage of 30 V and an internal resistance of 1.5 Ohm. A resistive load is connected to the source. Maximum power dissipated in the load is (A) 300 W (B) 150 W (C) 45 W (D) 20 W

Last Answer : A d.c. source has an open circuit voltage of 30 V and an internal resistance of 1.5 Ohm. A resistive load is connected to the source. Maximum power dissipated in the load is 150 W

Description : A 20-MVA, 6.6-kV, 3-phase alternator is connected to a 3-phase transmission line. The per unit positive-sequence, negative-sequence and zero-sequence impedances of the alternator are j0.1, j0.1 and j0.04 respectively. The neutral of ... the fault is  (A) 513.8 V (B) 889.9 V (C) 1112.0 V (D) 642.2 V

Last Answer : A 20-MVA, 6.6-kV, 3-phase alternator is connected to a 3-phase transmission line. The per unit positive-sequence, negative-sequence and zero-sequence impedances of the alternator are j0.1, ... line. The voltage of the alternator neutral with respect to ground during the fault is 642.2 V

Description : A 800 kV transmission line is having per phase line inductance of 1.1 mH/km and per phase line capacitance of 11.68 nF/km. Ignoring the length of the line, its ideal power transfer capability in MW is (A) 1204 MW (B) 1504 MW (C) 2085 MW (D) 2606 MW

Last Answer : A 800 kV transmission line is having per phase line inductance of 1.1 mH/km and per phase line capacitance of 11.68 nF/km. Ignoring the length of the line, its ideal power transfer capability in MW is 2085 MW

Description : The sending end and receiving end voltages of a three-phase transmission line are 10 kV/ph and 9.5 kV/ph, respectively. If the resistance drop is 150 V/ph and receiving end power factor is 0.8, the sending end power factor is (A) 0.745 lagging (B) 0.775 lagging (C) 0.8 lagging (D) 0.85 lagging

Description : A three phase overhead transmission line has its conductors horizontally spaced with spacing between adjacent conductors equal to 'd'. if now the conductors of the line are rearranged to form and the equilateral triangle of sides equal to 'd' then?

Last Answer : A three-phase overhead transmission line has its conductors horizontally spaced with spacing between adjacent conductors equal to 'd'. if now the conductors of the line are rearranged to form and an equilateral triangle of sides equal to 'd' then average capacitance and inductance will increase.

Description : Not a reason for the use of an antenna coupler. A. To make the antenna look resistive B. To provide the output amplifier with the correct load impedance C. To discriminate against harmonics D. To prevent re-radiation of the local oscillator

Description : Indicate the false statement A. The noise generated in a resistance or the resistive component of any impedance is random. B. Random noise power is proportional to the bandwidth over which is measured ... exist D. All formula referring to random noise are applicable only to the value of such noise.

Last Answer : C. A random voltage across the resistor does not exist

Description : A waveguide may also be terminated in a resistive load that is matched to the characteristic impedance of the waveguide. The resistive load is most often called a _____

Description : One ofthe followingis not a reason forthe use of anantenna coupler: a. To make the antenna look resistive b. To provide the output amplifier with the correct load impedance c. To discriminate against harmonics d. To prevent reradiation of the local oscillator

Description : The lossless line of characteristics impedance 300 Ohm is terminated in a pure resistance of 200 Ohm. The value of the standing wave ratio is  (a) 1.5 (b) 0.67 (c) 1.0 (d) 1.25

Last Answer : The lossless line of characteristics impedance 300 Ohm is terminated in a pure resistance of 200 Ohm. The value of the standing wave ratio is 1.5

Description : relay is preferred for phase fault on short transmission line. (a) Induction type (b) Reactance (c) Impedance (d) None of the above

Description : A loss less line terminated with its surge impedance has

Last Answer : A loss less line terminated with its surge impedance has flat voltage profile.

Description : Single-phase Midpoint controlled rectifier with Resistive load

Last Answer : Single-phase Midpoint controlled rectifier with Resistive load:  1) During positive half cycle of AC supply, a is positive with respect to b , this makes T1 forward biased and T2 is reverse ... voltage reverses the polarity and T2 is turned off. The operation is as shown in waveforms.

Description : A single-phase transformer has a turns ratio of 1 :2 and is connected to a purely resistive load as shown in the figure. The magnetizing current drawn is 1A, and the secondary current is 1A. Ifcore losses and ... reactances are neglected, the primary current is  A)1.41A B)2A C) 2.24A D)3A

Last Answer : A single-phase transformer has a turns ratio of 1 :2 and is connected to a purely resistive load as shown in the figure. The magnetizing current drawn is 1A, and the secondary current is 1A. Ifcore losses and leakage reactances are neglected, the primary current is 2.24A

Description : The standing wave ratio of a 75 Ω transmission line used to feed a 300 Ω resistive load will be _____.

Last Answer : The standing wave ratio of a 75 Ω transmission line used to feed a 300 Ω resistive load will be 4.

Description : The rotor impedance of a slip ring induction motor is (0.1 + j0.6)Ohm/ ph . The resistance/ph to be inserted into rotor to get maximum torque at starting should be

Last Answer : The rotor impedance of a slip ring induction motor is (0.1 + j0.6)Ohm/ ph . The resistance/ph to be inserted into rotor to get maximum torque at starting should be 0.5 Ohm

Description : For a single phase overhead line having solid copper conductors of diameter 1 cm, spaced 60 cm between centers, the inductance in mH/km is?

Last Answer : For a single phase overhead line having solid copper conductors of diameter 1 cm, spaced 60 cm between centers, the inductance in mH/km is 0.05 + 0.2 ln (6010.5).

Description : The conductor of a 10 km long, single phase, two wire line are separated by a distance of 1.5 m. The diameter of each conductor is 1 cm, If the conductors are of copper, the inductance of the circuit is

Last Answer : The conductor of a 10 km long, single phase, two wire line are separated by a distance of 1.5 m. The diameter of each conductor is 1 cm, If the conductors are of copper, the inductance of the circuit is 23.8 mH.

Description : The voltage at the two ends of a transmission line are 132 KV and its reactance is 40 ohm. The Capacity of the line is (A) 435.6 MW (B) 217.8 MW (C) 251.5 MW (D) 500 MW

Last Answer : (A) 435.6 MW

Description : The per unit impedance ofa circuit element is 0.15. If the base kV and base MVA are halved, then the new value of the per unit impedance of the circuit element will be?

Last Answer : The per unit impedance ofa circuit element is 0.15. If the base kV and base MVA are halved, then the new value of the per unit impedance of the circuit element will be 0.30.

Description : A generator is connected through a 20 MVA, 13.8/138 kV step down transformer, to a transmission line. At the receiving end of the line a load is supplied through a step down transformer of 10 MVA, 138/69 kV rating. A 0.72 ... load (in per unit) in generator will be (A) 36 (B) 1.44 (C) 0.72 (D) 0.18

Last Answer : A generator is connected through a 20 MVA, 13.8/138 kV step down transformer, to a transmission line. At the receiving end of the line a load is supplied through a step down transformer of 10 MVA, 138/ ... MVA and 69 kV in load circuit, the value of the load (in per unit) in generator will be 36

Description : A single phase transformer has resistance and reactance of 0.2 pu and 0.6 pu respectively. Its pu voltage regulation at 0.8 pf lagging would he

Last Answer : A single phase transformer has resistance and reactance of 0.2 pu and 0.6 pu respectively. Its pu voltage regulation at 0.8 pf lagging would he 0.52

Description : The zero sequence current of a generator for line to ground fault is j 2.4 p.u. The current through the neutral during the fault is (a) j 0.8 p.u (b) j 2.4 p.u. (c) j 0.24 p.u. (d) j 7.2 p.u.

Description : When troubleshooting most electronic circuits, 'loading effect' can be minimized by using a voltmeter with a/an ___________________. A. input impedance much greater than the impedance across which the voltage ... sensitivity of less than 1000 ohms/volt D. sensitivity of more than 1000 volts/ohm

Description : The intrinsic impedance of free space is given by a) 272 ohm b) 412 ohm c) 740 ohm d) 377 ohm

Last Answer : d) 377 ohm

Description : Calculate the characteristics impedance for a transmission line having L=0.5 mH/Km, C=0.08 µF and negligible R and G.

Last Answer : L=0.5 mH/Km C=0.08 µF

Description : The parameters of Transmission line are R = 50 Ω/ km, L= 1mH/km ,C = 0.1µf/km, G = 2µV/km. calculate characteristic impedance.

Last Answer : The parameters of Transmission line are R = 50 Ω/ km, L= 1mH/km ,C = 0.1µf/km, G = 2µV/km. calculate characteristic impedance.

Description : A transmission line has 1 P.0 impedance on a base of 11 KV, 100 MVA. On a base of 55 KV. it will have a P.0 impedance of

Last Answer : A transmission line has 1 P.0 impedance on a base of 11 KV, 100 MVA. On a base of 55 KV. it will have a P.0 impedance of 0.02 P.U

Description : The impedance of a circuit is given by z=3+j4. Its conductance will be?

Last Answer : The impedance of a circuit is given by z=3+j4. Its conductance will be 3/25.

Description : The potential coil of a single phase dynamometer wattmeter has 4840 Ohm resistance. Voltage across the load is 220 V. With the potential coil connected on the load side, the meter indicates 100 W. Approximate percentage error due to wattmeter connection is (A) 11% (B) 9% (C) 1.1% (D) 3%

Last Answer : The potential coil of a single phase dynamometer wattmeter has 4840 Ohm resistance. Voltage across the load is 220 V. With the potential coil connected on the load side, the meter indicates 100 W. Approximate percentage error due to wattmeter connection is 11%

Description : A single phase 60 Hz generator supplies an inductive load of 4500kW at a power factor of 0.80 lagging by means of a 20 km long overhead transmission line. The line resistance and inductance are 0.0195 ohm and 0.60 mH ... voltage regulation of the line.  (A) 12.59% (B) 16.34% (C) 32.68% (D) 41.15%

Description : The sequence components of current of a single-phase load connected to a 3-phase system are (A) equal positive and negative sequence components (B) equal positive, negative and zero sequence components (C) vector sum of sequence currents is zero (D) algebraic sum of sequence currents is zero

Last Answer : The sequence components of current of a single-phase load connected to a 3-phase system are equal positive, negative and zero sequence components

Description : Choose two appropriate auxiliary components of a HVDC transmission system from the following P. D.C line inductor Q. A.C line inductor R. Reactive power sources S. Distance relays on D.C line T. Series capacitance on A.C. line  (A) P and Q (B) P and R (C) Q and S (D) S and T

Last Answer : Choose two appropriate auxiliary components of a HVDC transmission system from the following P. D.C line inductor Q. A.C line inductor R. Reactive power sources S. Distance relays on D.C line T. Series capacitance on A.C. line  (A) P and Q (B) P and R (C) Q and S (D) S and T

Description : The transmission line distance protection relay having the property of being inherently directional is (A) impedance relay (B) MHO relay (C) OHM relay (D) reactance relay

Last Answer : The transmission line distance protection relay having the property of being inherently directional is MHO relay

Description : An 800 kV transmission line has a maximum power transfer capacity of P. If it is operated at 400 kV with the series reactance unchanged, the new maximum power transfer capacity is approximately (A) P (B) 2P (C) P / 2 (D) P / 4

Last Answer : An 800 kV transmission line has a maximum power transfer capacity of P. If it is operated at 400 kV with the series reactance unchanged, the new maximum power transfer capacity is approximately P / 4

Description : An HVDC link consist of rectifier, inverter transmission line and other equipments. Which one of the following is true for this link ?  (A) The transmission line produces/ supplies ... ) Both the converters (rectifier and inverter) consume reactive power from the respective connected AC systems

Last Answer : An HVDC link consist of rectifier, inverter transmission line and other equipments. Which one of the following is true for this link ?  (A) The transmission line produces/ supplies ... ) Both the converters (rectifier and inverter) consume reactive power from the respective connected AC systems

Description : For enhancing the power transmission in along EHV transmission line, the most preferred method is to connect a  (A) Series inductive compensator in the line (B) Shunt inductive compensator at the ... (C) Series capacitive compensator in the line (D) Shunt capacitive compensator at the sending end

Last Answer : For enhancing the power transmission in along EHV transmission line, the most preferred method is to connect a Series capacitive compensator in the line

Description : For a fixed value of complex power flow in a transmission line having a sending and voltage V, the real power loss will be proportional to  A) V B) v2 C) 1/V2 D)1/V

Last Answer : For a fixed value of complex power flow in a transmission line having a sending and voltage V, the real power loss will be proportional to 1/V2