Define: i) Elastic limit ii) Factor of safety .

1 Answer

Answer :

i) Elastic limit: -It is the maximum value of the stress upto which the body shows elasticity. 

ii) Factor of Safety: It is defined as the ratio of ultimate stress to working stress. 

Related questions

Description : Factor of safety for fatigue loading is the ratio of (a) elastic limit to the working stress (b) Young's modulus to the ultimate tensile strength (c) endurance limit to the working stress (d) elastic limit to the yield point

Last Answer : (c) endurance limit to the working stress

Description : If Q is load factor, S is shape factor and F is factor of safety in elastic design, the following:  (A) Q = S + F (B) Q = S - F (C) Q = F - S (D) Q = S × F

Last Answer : (D) Q = S × F

Description : State Hooke’s Law of elasticity. Define Elastic limit.

Last Answer : Hooke’s Law:- Within elastic limit, stress is directly proportional to strain.  Elastic limit: -It is the maximum value of the stress upto which the body shows elasticity.

Description : Define the terms. (i)Factor of safety (ii)working stress

Last Answer : (i) Factor of Safety: Factor of safety is defined as the ratio of the maximum stress to the working stress or design stress. Mathematically,  In Case of Ductile Material, (ii) ... : It is defined as the ratio of actual axial load and the original cross section of the specimen 

Description : Define the term i) Ultimate stress ii) Factor of safety.

Last Answer : i) Ultimate Stress:- It is defined as the ratio of maximum load that the specimen (system) can withstand to original cross-sectional area of specimen.  ii) Factor of Safety:- It is defined as the ratio of ultimate stress to working stress.

Description : The connecting rod bolts are tightened up so that the initial tightening stress (A) Approaches yield point (B) Approaches endurance limit (C) Approaches (yield point stress/factor of safety) (D) Approaches (endurance limit stress/factor of safety)

Last Answer : (A) Approaches yield point

Description : Partial safety factor for strength in steel m Limit state design is [ A ] 1.15 [ B ] 1.25 [ C ] 1.5 [ D ] 1.65

Last Answer : [ A ] 1.15

Description : Partial safety factor for strength of concrete in Limit state design is [ A ] 1.15 [ B ] 1.25 [ C ] 1.5 [ D ] 1.65

Last Answer : [ C ] 1.5

Description : Partial safety factor for strength in steel m Limit state design is [ A ] 1.15 [ B ] 1.25 [ C ] 1.5 [ D ] 1.65

Last Answer : [ A ] 1.15

Description : Partial safety factor for strength of concrete in Limit state design is [ A ] 1.15 [ B ] 1.25 [ C ] 1.5 [ D ] 1.65

Last Answer : [ C ] 1.5

Description : In Limit state method of design, the factor of safety for concrete and steel respectively are [ A ] 3.00 and 1.80 [ B ] 1.50 and 1.18 [ C ] 1.50 and 1.15 [ D ] 1.50 and 1.50

Last Answer : [ C ] 1.50 and 1.15

Description : Theories of elastic failure establishes the (a) Firstly Reasons of failure (b) Secondly Reasons of safety (c) Both (a) & (b) (d) None

Last Answer : (c) Both (a) & (b)

Description : Under complex loading, theories of elastic failure establishes the (a) Margin of failure (b) Margin of safety (c) Both (a) & (b) (d) None

Last Answer : (b) Margin of safety

Description : Proportional to the distortion of the stress within the elastic limit. Whose formula is this?

Last Answer : Proportion of stress distortion within the elastic limit. This is Robert Hooke's formula.

Description : What is elastic limit ?

Last Answer : Substances that have this property are called elastic substances . However, the ball has a limit beyond which the object does not return to its previous shape when applied more force. This limit is called elastic limit .

Last Answer : The maximum amount of force applied to an object that makes the object fully elastic is called elastic limit.

Description : What is the maximum value of deforming force upto which a material shows elastic property and above which the material loses it? (1) Elasticity (2) Strain (3) Elastic Limit (4) Stress

Last Answer : (3) Elastic Limit Explanation: The Maximum Extent to which a solid may be stretched without permanent alteration of size or shape.

Description : What is the maximum value of deforming force up to which a material shows elastic property and above which the material loses it? (1) Elasticity (2) Strain (3) Elastic Limit (4) Stress

Last Answer : (4) Elastic Limit Explanation: The Maximum Extent to which a solid may be stretched without permanent alteration of size or shape.

Description : Why is it that the maximum value which the residual stress can reach is the elastic limit of the material ?

Last Answer : A stress in excess of elastic limit, with no external force to oppose it, will relieve itself by plastic deformation until it reaches the value of the yield stress.

Description : Why is it that the maximum value which the residual stress can reach is the elastic limit of the material ?

Last Answer : A stress in excess of elastic limit, with no external force to oppose it, will relieve itself by plastic deformation until it reaches the value of the yield stress.

Description : Cast iron has (A) Very high tensile strength (B) High ductility (C) High malleability (D) Elastic limit close to ultimate breaking strength

Last Answer : (D) Elastic limit close to ultimate breaking strength

Description : All materials obey Hooke's law within elastic limit. When elastic limit is reached, the tensile strain (A) Increases very quickly (B) Decreases very quickly (C) Increases in proportion to stress (D) Decreases in proportion to stress

Last Answer : (A) Increases very quickly

Description : Cast iron has (A) High ductility (B) High malleability (C) Very high tensile strength (D) Its elastic limit very close to ultimate breaking strength

Last Answer : (D) Its elastic limit very close to ultimate breaking strength

Description : A material no longer behaves elastically beyond (A) Plastic limit (B) Limiting load (C) Elastic limit (D) Breaking load

Last Answer : (C) Elastic limit

Description : Failure of a material is termed as fatigue failure, if it fails below the yield point. The resistance to fatigue failure of a material is measured by the (A) Ultimate tensile strength (U.T.S.) (B) Endurance limit (C) Elastic limit (D) None of these

Last Answer : (B) Endurance limit

Description : Cast iron is having very high (A) Proximity between its elastic limit and ultimate breaking strength (B) Ductility (C) Tensile strength (D) All (A), (B) and (C)

Last Answer : (A) Proximity between its elastic limit and ultimate breaking strength

Description : Lead pipe is (A) Especially resistant to solutions containing H2SO4 (B) Usually joined by burning (e.g. by melting to adjacent pieces with a torch) (C) Having very low elastic limit resulting in permanent deformation from either mechanical or thermal strain (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C

Description : At yield point' of a copper wire A. the load hasn't exceeded the elastic limit yet; so, Hooke's law applies B. the load has already exceeded the elastic limit and the material has become ... stage has passed and the wire has snapped already D. Like Brass and Bronze, Copper has no yield poin

Last Answer : the load has already exceeded the elastic limit and the material has become plastic

Description : Hooke's law states that A. the extension is proportional to the load when the elastic limit is not exceeded B. the extension is inversely proportional to the load when the elastic limit is not ... is independent of the load when the elastic limit is not exceeded D. load is dependent on extension

Last Answer : the extension is proportional to the load when the elastic limit is not exceeded

Description : The spring operates (A) Within plastic limit (B) Within elastic limit (C) Within elasto-plastic limit (D) Within visco-elastic limit

Last Answer : (B) Within elastic limit

Description : The resistance to fatigue of a material is measured by (a) elastic limit (b) Young's modulus (c) ultimate tensile strength (d) endurance limit

Last Answer : (d) endurance limit

Description : Failure of a material is called fatigue when it fails (a) at the elastic limit (b) below the elastic limit (c) at the yield point (d) below the yield point

Last Answer : (d) below the yield point

Description : In a ductile material, the strength are (a)Firstly Ultimate >yield > elastic limit (b) Secondly Ultimate > yield =elastic limit (c) Thirdly Ultimate=yield=elastic limit (d) None

Last Answer : (a)Firstly Ultimate >yield > elastic limit

Description : In a brittle material, the strength are (a) Firstly Ultimate >yield > elastic limit (b) Secondly Ultimate > yield =elastic limit (c) Thirdly Ultimate=yield=elastic limit (d) None

Last Answer : (c) Thirdly Ultimate=yield=elastic limit

Description : Under complex loading, if elastic limit reaches in tension, then failure occurs due to (a) Firstly Maximum principal strain theory (b) Secondly Maximum principal theory of strain energy (c) Thirdly Maximum Principal stress theory (d) None

Last Answer : (c) Thirdly Maximum Principal stress theory

Description : Under complex loading, if elastic limit reaches in tension, then failure occurs due to (a) Firstly Maximum principal strain theory (b) Secondly Maximum principal theory of strain energy (c) Thirdly Maximum shear stress theory (d) None

Last Answer : (d) None

Description : Total strain energy theory for the failure of a material at elastic limit, is known  (A) Guest's or Trecas' theory  (B) St. Venant's theory  (C) Rankine's theory  (D) Haig's theory 

Last Answer : (D) Haig's theory 

Description : Shear strain energy theory for the failure of a material at elastic limit, is due to  (A) Rankine  (B) Guest or Trecas  (C) St. Venant  (D) Von Mises

Last Answer : (D) Von Mises

Description : Maximum shear stress theory for the failure of a material at the elastic limit, is known  (A) Guest's or Trecas' theory  (B) St. Venant's theory  (C) Rankine's theory  (D) Haig's theory

Last Answer : (A) Guest's or Trecas' theory

Description : Maximum strain theory for the failure of a material at the elastic limit, is known as  (A) Guest's or Trecas' theory  (B) St. Venant's theory  (C) Rankine's theory  (D) Haig's theory 

Last Answer : (B) St. Venant's theory

Description : Every material obeys the Hooke's law within its (A) Elastic limit (B) Plastic point (C) Limit of proportionality (D) None of these

Last Answer : (C) Limit of proportionality

Description : As the elastic limit reaches, tensile strain (A) Increases more rapidly (B) Decreases more rapidly (C) Increases in proportion to the stress (D) Decreases in proportion to the stress

Last Answer : (A) Increases more rapidly

Description : Hooke's law (A) Applies to elastic deformation (B) Applies beyond limit of proportionality in stress-strain curve (C) States that stress is inversely proportional to strain upto elastic limit (D) None of these

Last Answer : (A) Applies to elastic deformation

Description : Pick out the wrong statement. (A) The equivalent stiffness of two springs (of equal stiffness 'S') in series is S/2 while in parallel is 2S (B) For a helical spring, deflection is ... is less than the buckling load (D) Modulus of resilience is proportional to (stress at elastic limit)2

Last Answer : (C) Crushing load or columns is less than the buckling load

Description : Fatigue resistance of a material is measured by the (A) Elastic limit (B) Ultimate tensile strength (C) Young's modulus (D) Endurance limit

Last Answer : (D) Endurance limit

Description : cylindrical rod subjected to a tensile strain within the elastic limit undergoes a volume change. If the volume strain is equal to half the tensile strain, then the Poisson's ratio of the rod is (A) 0 (B) 0.33 (C) 0.44 (D) 0.25

Last Answer : Option C

Description : spring material should have low (A) Elastic limit (B) Deflection value (C) Fatigue resistance (D) None of these

Last Answer : Option D

Description : spring material should have low (A) Elastic limit (B) Deflection value (C) Fatigue resistance (D) None of these

Last Answer : Option D

Description : Presence of nickel & chromium in steel does not raise its (A) Elastic limit (B) Machining properties (C) Ductility (D) Resilience Answer: Option A

Last Answer : Option A

Description : Stresses encountered in the metal forming processes are less than the __________ of the material. (A) Fracture strength (B) Yield strength (C) Elastic limit (D) Limit of proportionality

Last Answer : Option A