The dimensional formula of bulk modulus of elasticity is same as that
of the
(A) Pressure
(B) Density
(C) Force
(D) None of these

1 Answer

Answer :

Option A

Related questions

Description : The dimensional formula ML⁻¹T⁻² corresponds to – (1) Modulus of elasticity (2) Viscosity (3) Moment of a force (4) Thrust

Last Answer : (1) Modulus of elasticity Explanation: M Li- T-2 is the dimension of any quantity that is force per unit area such as Pressure or Stress, Young's Modulus, Bulk Modulus, Modulus of Rigidity, ... the ratio of the stress applied to a body or substance to the resulting strain within the elastic limit.

Description : The dimensional formula ML–1T –2 corresponds to (1) Modulus of elasticity (2) Viscosity (3) Moment of a force (4) Thrust

Last Answer : Modulus of elasticity

Description : The bulk modulus of elasticity of a liquid (A) Is zero for incompressible liquid (B) Decreases with pressure (C) Is independent of temperature & pressure (D) Increases with pressure

Last Answer : (D) Increases with pressure

Description : The bulk modulus of elasticity (A) Has the dimensions of 1/pressure (B) Increases with pressure (C) Is large when fluid is more compressible (D) Is independent of pressure and viscosity

Last Answer : Answer: Option B

Description : bulk modulus of elasticity with increase in pressure (A) Increases (B) Decreases (C) Remain constant (D) Increases first up to certain limit and then decreases

Last Answer : Answer: Option A

Description : The unit of bulk modulus of elasticity for a liquid in S.I. unit is (A) N (B) N/m (C) N/m2 (D) N/m3

Last Answer : (C) N/m2

Description : For an incompressible fluid, the bulk modulus of elasticity is (A) 5 kg/m3 (B) ∞ N/m2 (C) 1 N (D) 0 N/m

Last Answer : (B) ∞ N/m2

Description : If E, N, K and 1/m are modulus of elasticity, modulus of rigidity. Bulk modulus and Poisson ratio of  the material, the following relationship holds good  (A) E = 3K (1 - 2/m)  (B) E = 2N (1 + 1/m)  (C) (3/2)K (1 - 2/m) = N (1 + 1/m)  (D) All the above 

Last Answer : (D) All the above 

Description : A liquid compressed in cylinder has a volume of 0.04 m3 at 50 kg/cm² and a volume of 0.039 m3 at 150 kg/cm². The bulk modulus of elasticity of liquid is (A) 400 kg/cm² (B) 4000 kg/cm² (C) (D)

Last Answer : Answer: Option B

Description : The ratio of stress to volumetric strain is called a) Shear Modulus b) Young’s Modulus c) Bulk Modulus d) Modulus of elasticity

Last Answer : c) Bulk Modulus

Description : The ratio of lateral strain to linear strain is called (a) Modulus of Elasticity (b) Modulus of Rigidity (c) Bulk Modulus (d) Poisson’s Ratio

Last Answer : (d) Poisson’s Ratio

Description : Bulk modulus of elasticity is a. Tensile stress / Tensile strain b. Shear stress / Shear strain c. Tensile stress / Shear strain d. Normal stress on each face of cube / Volumetric strain

Last Answer : d. Normal stress on each face of cube / Volumetric strain

Description : M L2 T–2 is the dimensional formula for (a) Moment of inertia (b) Pressure (c) Elasticity (d) Couple acting on a body

Last Answer : Ans:(d)

Description : Euler's formula states that the buckling load for a column of length , both ends hinged and whose least moment of inertia and modulus of elasticity of the material of the column are and respectively, is given by the relation (A) P = ²EI/l² (B) P = /EI (C) P = /l² (D) P = ²EI/l

Last Answer : (A) P = ²EI/l²

Description : Velocity of sound waves through any material depends on A. the material's density ‘d’ only B. the material's density ‘d’ as well as its modulus of elasticity ‘E’ C. the material's modulus of elasticity ‘E’ only D. neither the material's density ‘d’ nor its modulus of elasticity ‘E’

Last Answer : the material's density ‘d’ as well as its modulus of elasticity ‘E’

Description : Speed ‘v’ with which wave travels through a medium is given by A. modulus of elasticity/density of the medium B. modulus of elasticity/√(density of the medium) C. √(modulus of elasticity/density of the medium) D. v=d/t

Last Answer : √(modulus of elasticity/density of the medium)

Description : While Young's modulus ‘E’ relates to change in length and bulk modulus ‘K’ relates to change in volume, modulus of rigidity ‘G’ relates to change in: A. weight B. density C. shape D. temperature

Last Answer : . shape

Description : (A) Absolute temperature (B) Temperature (C) Density (D) Modulus of elasticity

Last Answer : Answer: Option A

Description : Bulk modulus of a fluid __________ as the pressure increases. (A) Remain same (B) Decreases (C) Increases (D) None of these

Last Answer : Answer: Option C

Description : A leaf spring consists of 3 extra full length leaves and 14 graduated length leaves. The maximum force that can act on the spring is 70kN and the distance between eyes of the spring is 1.2m. Width and thickness of the ... /mm², calculate the initial nip. (a) 26.8mm (b) 24.9mm (c) 22.5mm (d)23.1mm

Last Answer : b) 24.9mm

Description : Adiabatic bulk modulus is equal to:  A. Υ × P; where Υ: the ratio of the specific heat capacities of the gas, P: pressure B. Pressure C. The ratio of the specific heat capacities of the gas D. Υ ⁄ P; where Υ: the ratio of the specific heat capacities of the gas, P: pressure

Last Answer : Υ × P; where Υ: the ratio of the specific heat capacities of the gas, P: pressur

Description : Isothermal bulk modulus is equal to A. Υ × P; where Υ: the ratio of the specific heat capacities of the gas, P: pressure B. Pressure C. The ratio of the specific heat capacities of the gas D. Υ ⁄ P; where Υ: the ratio of the specific heat capacities of the gas, P: pressure

Last Answer : Pressure

Description : The strain energy due to volumetric strain  (A) Is directly proportional to the volume  (B) Is directly proportional to the square of exerted pressure  (C) Is inversely proportional to Bulk modulus  (D) All the above 

Last Answer : (D) All the above 

Description : Whenever a plate is held immersed at some angle with the direction of flow of the liquid, it is subjected to some pressure. The component of this pressure, in the direction of flow of the liquid, is known as (A) Lift (B) Drag (C) Stagnation pressure (D) Bulk modulus

Last Answer : Answer: Option B

Description : Bulk modulus of a fluid is the ratio of (A) Shear stress to shear strain (B) Increase in volume to the viscosity of fluid (C) Increase in pressure to the volumetric strain (D) Critical velocity to the viscosity of fluid

Last Answer : Answer: Option C

Description : A standard steel tape of length 30 m and cross-section 15 1.0 mm was standardised at 25°C and at 30 kg pull. While measuring a base line at the same temperature, the pull applied was 40 kg. If the modulus of elasticity of ... (A) - 0.000909 m (B) + 0.0909 m (C) 0.000909 m (D) None of these

Last Answer : (A) - 0.000909 m

Description : Which of the following mechanical properties of a material is most structure insensitive? (A) Modulus of elasticity (young's modulus) (B) Toughness (C) Percentage reduction of area (D) Tensile strength

Last Answer : (A) Modulus of elasticity (young's modulus)

Description : Approximate value of the modulus of elasticity for steel is about __________ × 10 6kg/cm2 . (A) 0.5 (B) 2 (C) 40 (D) 75

Last Answer : (B) 2

Description : Which of the following has the highest modulus of elasticity (about 7 × 106 kg/cm2)? (A) High speed steel (B) Stainless steel (C) Tungsten carbide (D) Superalloys

Last Answer : (C) Tungsten carbide

Description : If length ‘L’, force ‘F’ and time ‘T’ are taken as fundamental quantities, what would be the dimensional equation of mass and density?

Last Answer : If length ‘L’, force ‘F’ and time ‘T’ are taken as fundamental quantities, what would be the dimensional equation of mass and density?

Description : The dimensions of modulus of elasticity are a.MLT-2 b.107 dynes c.MLT-1 d.ML-2T-1 e.ML-1T-2

Last Answer : e. ML-1T-2

Description : What is the SI unit of Young’s modulus of elasticity? -Do You Know?

Last Answer : answer:

Description : Distinguish between Young’s modulus, bulk modulus and modulus of rigidity.

Last Answer : Distinguish between Young’s modulus, bulk modulus and modulus of rigidity.

Description : Dimension of modulus of elasticity is (a) ML–2T–2 (b) M–1L–1T–2 (c) ML–1T–2 (d) ML–1T–1

Last Answer : Ans:(c)

Description : What is the SI unit of Young’s modulus of elasticity?

Last Answer : Newton/m2

Description : Which of the following is measure of stiffness? a) Modulus of elasticity b) Modulus of plasticity c) Resilience d) Toughness

Last Answer : a) Modulus of elasticity

Description : The ability of a material to resist plastic deformation known as _____________ a) Tensile strength b) Yield strength c) Modulus of elasticity d) Impact strength

Last Answer : b) Yield strength

Description : The ratio of shear stress and shear strain of an elastic material, is  (A) Modulus of Rigidity  (B) Shear Modulus  (C) Modulus of Elasticity  (D) Both (a) and (b) 

Last Answer : (D) Both (a) and (b) 

Description : A steel bar 5 m × 50 mm is loaded with 250,000 N. If the modulus of elasticity of the material is 0.2  MN/mm2  and Poisson's ratio is 0.25, the change in the volume of the bar is:  (A) 1.125 cm3 (B) 2.125 cm3 (C) 3.125 cm3 (D) 4.125 cm

Last Answer : (C) 3.125 cm

Description : A cantilever of length 2 cm and depth 10 cm tapers in plan from a width 24 cm to zero at its free  end. If the modulus of elasticity of the material is 0.2 × 106  N/mm2 , the deflection of the free end,  is  (A) 2 mm  (B) 3 mm  (C) 4 mm  (D) 5 mm

Last Answer : (D) 5 mm

Description : If M, I, R, E, F, and Y are the bending moment, moment of inertia, radius of curvature, modulus of  elasticity stress and the depth of the neutral axis at section, then  (A) M/I = R/E = F/Y (B) I/M = R/E = F/Y (C) M/I = E/R = E/Y (D) M/I = E/R = Y/F

Last Answer : (C) M/I = E/R = E/Y

Description : For a given material, if E, C, K and m are Young's modulus, shearing modulus, bulk modulus and Poisson ratio, the following relation does not hold good (A) E = 9KC/3K + C (B) E = 2K (1 + 2/m) (C) E = 2C (1 + 1/m) (D) E = 3C (1 - 1/m)

Last Answer : (C) E = 2C (1 + 1/m)

Description : The Young's modulus of elasticity of steel, is (A) 150 KN/mm2 (B) 200 KN/mm2 (C) 250 KN/mm2 (D) 275 KN/mm

Last Answer : Answer: Option D

Description : The value of bulk modulus of a fluid is required to determine (A) Reynold's number (B) Froude's number (C) Mach number (D) Euler's number

Last Answer : Answer: Option C

Description : Modulus of elasticity of steel as per IS: 4561978 shall be taken as (A) 20 kN/cm² (B) 200 kN/cm² (C) 200 kN/mm² (D) 2 × 106 N/cm2

Last Answer : Answer: Option C

Description : Consider the following statements: Percentage of steel for balanced designed of a singly reinforced rectangular section by limit state method depends on (1) Characteristic strength of concrete (2) Yield strength of concrete (3) Modulus of elasticity ... (b) 1, 3 and 4 (c) 1, 2 and 4 (d) 1, 2 and 3

Last Answer : 1,2,4

Description : Which one of the following statements is not correct with respect to PSC beams? (a) Loss due to shrinkage is proportional to water-cement ratio used in concrete (b) Loss due to creep is ... to the modulus of elasticity of concrete (d) Loss due to friction occurs in post tensioned concrete members

Last Answer : (c) Loss due to elastic deformation is directly proportionally to the modulus of elasticity of concrete

Description : Which of the following statements refer to correct purpose as regards testing of concrete by ultrasonic pulse velocity method? 1. To assess the quality of concrete in-situ. 2. To determine the dynamic modulus of elasticity of concrete. 3 ... and 2 only (b) 1 and 3 only (c) 2 and 3 only (d)1, 2 and 3

Last Answer : (d)1, 2 and 3

Description : Modulus of elasticity of concrete is increased with (a) Higher W/C ratio (b) Shorter curing period (c) Lesser vibration (d) Increase in age

Last Answer : (d) Increase in age

Description : Modulus elasticity of steel is generally taken as [ A ] 2 x 105 N/mm2 [ B ] 2 x 106 N/mm2 [ C ] 2 x 106 N/mm2 [ D ] 2 x 105 N/mm2

Last Answer : [ A ] 2 x 105 N/mm2