The equation, Cp- Cv = R, is true for __________ gas. (A) No
(B) Any real
(C) Only ideal
(D) Both (B) and (C)

1 Answer

Answer :

(C) Only ideal

Related questions

Description : Cp- Cv = R is valid for __________ gases. (A) Ideal (B) Very high pressure (C) Very low temperature (D) All of the above

Last Answer : (A) Ideal

Description : y = specific heat ratio of an ideal gas is equal to (A) Cp/Cv (B) Cp/(CP-R) (C) 1 + (R/CV) (D) All (A), (B) and (C)

Last Answer : D) All (A), (B) and (C)

Description : In a P-V diagram (for an ideal gas), an isothermal curve will coincide within adiabatic curve (through a point), when (A) Cp < Cv (B) Cp = Cv (C) Cp > Cv (D) C ≥ Cv

Last Answer : (B) Cp = Cv

Description : On a P-V diagram of an ideal gas, suppose a reversible adiabatic line intersects a reversible isothermal line at point A. Then at a point A, the slope of the reversible adiabatic line (∂P/∂V)s and the slope of the reversible isothermal line ... Y (C) (∂P/∂V)S = y(∂P/∂V)T (D) (∂P/∂V)S = 1/y(∂P/∂V)T

Last Answer : (C) (∂P/∂V)S = y(∂P/∂V)T

Description : Air enters an adiabatic compressor at 300K. The exit temperature for a compression ratio of 3, assuming air to be an ideal gas (Y = Cp/Cv = 7/5) and the process to be reversible, is (A) 300 × (32/7) (B) 300 × (33/5) (C) 300 × (333/7) (D) 300 × (35/7)

Last Answer : A) 300 × (32/7)

Description : In the equation, PVn = constant, if the value of n is in between 1 and y (i.e. Cp/Cv), then it represents a reversible __________ process. (A) Isometric (B) Polytropic (C) Isentropic (D) Isobaric

Last Answer : (B) Polytropic

Description : In the equation PVn = constant, if the value of n = y = Cp/Cv, then it represents a reversible __________ process. (A) Isothermal (B) Adiabatic (C) Isentropic (D) Polytropic

Last Answer : (C) Isentropic

Description : General gas equation is  (a) PV=nRT  (b) PV=mRT  (d) PV = C  (c) PV=KiRT  (e) Cp-Cv = Wj

Last Answer : Answer : b

Description : For perfect gas a. cp – cv = R b. cp + cv = R c. cp / cv = R d. cp X cv = R Where cp & cv are specific heats at constant pressure and volume.

Last Answer : ANSWER a. CP – CV = R

Description : The heat supplied to the gaS at constant volume is (where m = Mass of gas, cv = Specific heat at constant volume, cp = Specific heat at constant pressure, T2 – T1 = Rise in temperature, and R = Gas constant)  A. mR(T2 – T1)  B. mcv(T2 – T1)  C. mcp(T2 – T1)  D. mcp(T2 + T1)

Last Answer : Answer: B

Description : PVγ = Constant (where, γ = Cp/Cv) is valid for a/an __________ process. (A) Isothermal (B) Isentropic (C) Isobaric (D) Adiabatic

Last Answer : (D) Adiabatic

Description : The two specific heats of gases are related by : (1) Cp + Cv = RJ (2) Cp –Cv = R/J (3) Cp – Cv = RJ (4) Cp /Cv = R

Last Answer :  Cp –Cv = R/J

Description : Velocity of a gas in sound is not proportional to (where, T = Absolute temperature of the gas. P = Absolute pressure of the gas. y = Ratio of specific heats (Cp/Cv) ρ = specific weight of the gas) (A) √T (B) 1/√P (C) √y (D) 1/√ρ

Last Answer : (B) 1/√P

Description : The value of specific heat at constant pressure (cp) is __________ that of at constant volume (cv).  A. less than  B. equal to  C. more than

Last Answer : Answer: C

Description : For an ideal gas, Cp- Cvis (A) R (B) -R (C) 0 (D) (3/2) R

Last Answer : (A) R

Description : . The entropy change in a reversible isothermal process, when an ideal gas expands to four times its initial volume is (A) R loge 4 (B) R log10 4 (C) Cv log10 4 (D) Cv loge 4

Last Answer : (A) R loge 4

Description : . The entropy change in a reversible isothermal process, when an ideal gas expands to four times its initial volume is (A) R loge 4 (B) R log10 4 (C) Cv log10 4 (D) Cv loge 4

Last Answer : (A) R loge 4

Description : The gas constant is equal to  a. Cp – Cv  b. Cp + Cv  c. Cp – Cv + k  d. None of the above

Last Answer : Cp – Cv

Description : Characteristic gas constant of a gas is equal to  (a) C/Cv  (b) Cv/Cp  (c) Cp – Cv  (d) Cp + Cv  (e) Cp x Cv

Last Answer : Answer : c

Description : One kg of gas occupying 0.1m^3 at pressure of 14 bar is expanded at constant pressure to 0.2m^3. Determine an initial and final temperature of gas. Take Cp=1.008KJ/KgK, Cv =0.72KJ/KgK.

Last Answer : V1=0.1m^3 V2=0.2 m^3 P1=P2=14 bar Cp=1.008 KJ/KgK Cv=0.72 KJ/KgK R=Cp-Cv R=1.008-0.72 R=0.288KJ/KgK Characteristic gas equation,  P1V1=mRT1 14*10^5*0.1=1*288*T1 T1=486.11K For constant pressure process, V1/T1=V2/T2 0.1/486.11=0.2/T2 T2=972.22K

Description : Cp /Cv is termed as (A) Adiabatic constant (B) Mach number (C) Weber number (D) Prandtl number

Last Answer : (A) Adiabatic constan

Description : (1/V) (∂V/∂T)Pis the mathematical expression (A) Joule-Thomson co-efficient (B) Specific heat at constant pressure (Cp) (C) co-efficient of thermal expansion (D) Specific heat at constant volume (CV)

Last Answer : (C) co-efficient of thermal expansion

Description : If the molar heat capacities (Cp or Cv) of the reactants and products of a chemical reaction are identical, then, with the increase in temperature, the heat of reaction will (A) Increase (B) Decrease (C) Remain unaltered (D) Increase or decrease; depends on the particular reaction

Last Answer : (C) Remain unaltered

Description : For a constant pressure reversible process, the enthalpy change (ΔH) of the system is (A) Cv.dT (B) Cp.dT (C) ∫ Cp.dT (D) ∫ Cv.dT

Last Answer : (C) ∫ Cp.dT

Description : The value of Cp & Cv respectively for monatomic gases in Kcal/kg Mole.°K are (A) 5 & 3 (B) 3.987 & 1.987 (C) 1.987 & 0.66 (D) 0.66 & 1.987

Last Answer : A) 5 & 3

Description : (∂T/∂P)H is the mathematical expression for (A) Specific heat at constant pressure (Cp) (B) Specific heat at constant volume (Cv) (C) Joule-Thompson co-efficient (D) None of these

Last Answer : (C) Joule-Thompson co-efficient

Description : In case of compression of one kg of air, the work done will be the least, when the value of polytropic index 'n' is (A) 1 (B) 1.4 (C) 1.5 (D) Y = Cp/Cv

Last Answer : A) 1

Description : The value of y = cp/cv. at < 500°C for air & most common gases can be safely assumed to be (A) 0.8 (B) 1 (C) 1.4 (D) 1.8

Last Answer : Option C

Description : Give relation between Cp and Cv.

Last Answer : Ans. Cp – Cv = R

Description : The ratio of specific heat at constant pressure (Cp) and specific heat at constant volume (cv) is  A. equal to one  B. less than one  C. greater than one  D. none of these

Last Answer : Answer: C

Description : Equal volumes of two monoatomic gases, A and B, at same temperature and pressure are mixed. The ratio of specific heats (Cp /Cv ) of the mixture will be (1) 1.67 (2) 0.83 (3) 1.50 (4) 3.3

Last Answer : (1) 1.67

Description : To obtain integrated form of Clausius-Clapeyron equation, ln (P2/P1) = (∆HV/R) (1/T1- 1/T2) from the exact Clapeyron equation, it is assumed that the (A) Volume of the liquid phase is negligible compared to ... gas (C) Heat of vaporisation is independent of temperature (D) All (A), (B) & (C)

Last Answer : (D) All (A), (B) & (C)

Description : Which of the following is true for Virial equation of state? (A) Virial co-efficients are universal constants (B) Virial co-efficients 'B' represents three body interactions (C) Virial co-efficients ... of temperature only (D) For some gases, Virial equations and ideal gas equations are the same

Last Answer : (C) Virial co-efficients are function of temperature only

Description : Calculate the recoverable waste heat (Q, in kCal/hour) from flue gases using the followingparameters: V (flow rate of the substance) 2000 m3/hr r (density of the flue gas): 0.9 kg/m3 Cp (specific heat ... (temperature difference): 120 oC h (recovery factor): 50% a. 21600 b. 43200 c. 25600 d. 34000

Last Answer : 21600

Description : A certain gas, with cp = 0.529Btu/ lb. °Rand R = 96.2ft.lb/lb. °R, expands from 5 cu ft and 80°F to 15 cu ft while the pressure remains constant at 15.5psia. Compute for T2.  a.1520°R  b. 1620°R  c. 1720°R  d. 1820°R formula: T2= T1V2/V1

Last Answer : 1620°R

Description : A perfect gas has a value of R= 319.2 J/ kf.K and k= 1.26. If 120 kJ are added to 2.27 kf\g of this gas at constant pressure when the initial temp is 32.2°C? Find T2.  a. 339.4 K  b. 449.4 K  c. 559.4K  d. 669.4K formula: cp = kR/ k-1 Q= mcp(T2-T1)

Last Answer : 339.4 K

Description : A certain gas with cp = 0.529Btu/lb°R and R = 96.2ft/lbºR expands from 5 ft and 80ºF to 15 ft while the pressure remains constant at 15.5 psia.  a. T2=1.620ºR, ∫H = 122.83 Btu  b. T2 = 2°R, ∫H = 122.83 Btu  c. ... , ∫H = 122.83 Btu  d. T2 = 1°R, ∫H = 122.83 Btu T2= V2(t2)/V1 and ∫H = mcp (T2-T1)

Last Answer : T2=1.620ºR, ∫H = 122.83 Btu

Description : A certain gas, with cp = 0.529Btu/lb.°R and R = 96.2 ft.lb/lb.°R, expands from 5 cu ft and 80°F to 15 cu ft while the pressure remains constant at 15.5 psia. Compute for T2. (Formula: T2= T1V2/V1)  a. 460°R  b. 270°R  c. 1620 °R  d. None of the above

Last Answer : 1620 °R

Description : For a certain gas R = 320 J/kg.K and cv= 0.84kJ/kg.K. Find k?  a. 1.36  b. 1.37  c. 1.38  d. 1.39 formula: k= R / cv+1

Last Answer : 1.38

Description : In the equation Pv = RT, the constant of proportionality R is known as ______.  A. Universal gas constant  B. Gas constant  C. Ideal gas factor  D. Gas index

Last Answer : Gas constant

Description : Van der Waals equation explains the behaviour of (a) Mixture of gases (b) Ideal gas (c) Real gas (d) Water gas

Last Answer : Ans:(c)

Description : The expression for entropy change, ΔS = n Cp. ln (T2/T1), is valid for the __________ of a substance. (A) Simultaneous pressure & temperature change (B) Heating (C) Cooling (D) Both (B) and (C)

Last Answer : (D) Both (B) and (C)

Description : The temperature at which a real gas obeys the ideal gas laws over a wide range of pressure is called __________ temperature. (A) Boyle (B) Inversion (C) Critical (D) Reduced

Last Answer : (A) Boyle

Description : The temperature at which a real gas obeys the ideal gas laws over a wide range of pressure is called the __________ temperature. (A) Critical (B) Boyle (C) Inversion (D) Reduced

Last Answer : (B) Boyle

Description : Which of the following must be followed by the flow of a fluid (real or ideal)? (I) Newton's law of viscosity. (II) Newton's second law of motion. (III) The continuity equation. (IV) Velocity of boundary layer must be zero relative to ... . (A) I, II, III (B) II, III, V (C) I, II, V (D) II, IV, V

Last Answer : (B) II, III, V

Description : A centrifugal pump designed for handling water (μ = 1 cp) will deliver __________ when pumping a thicker oil (μ = 30 cp). (A) Less head & capacity (B) More head (C) More capacity (D) Less head & more capacity

Last Answer : (A) Less head & capacity

Description : ABCD is a parallelogram in which P and Q are the mid-points of opposite sides AB and CD (Fig. 8.48). If AQ intersects DP at S and BQ intersects CP at R, show that -Maths 9th

Last Answer : Solution :-

Description : ABCD is a square. P, Q, R, S are the mid-points of AB, BC, CD and DA respectively. By joining AR, BS, CP, DQ, we get a quadrilateral which is a -Maths 9th

Last Answer : According to the given statement, the figure will be a shown alongside; using mid-point theorem: In △ABC,PQ∥AC and PQ=21 AC .......(1) In △ADC,SR∥AC and SR=21 AC .... ... are perpendicular to each other) ∴PQ⊥QR(angle between two lines = angle between their parallels) Hence PQRS is a rectangle.

Description : Which of the following statements is TRUE for an ideal gas, but not for a real gas?  A. PV = nRT  B. An increase in temperature causes an increase in the kinetic energy of the gas  C. The ... same as the volume of the gas as a whole  D. No attractive forces exists between the molecule of a gas

Last Answer : PV = nRT