For perfect gas a. cp – cv = R b. cp + cv = R c. cp / cv = R d. cp X cv = R Where cp & cv are specific heats at constant pressure and volume.  

1 Answer

Answer :

ANSWER  a. CP – CV = R

Related questions

Description : Velocity of a gas in sound is not proportional to (where, T = Absolute temperature of the gas. P = Absolute pressure of the gas. y = Ratio of specific heats (Cp/Cv) ρ = specific weight of the gas) (A) √T (B) 1/√P (C) √y (D) 1/√ρ

Last Answer : (B) 1/√P

Description : The heat supplied to the gaS at constant volume is (where m = Mass of gas, cv = Specific heat at constant volume, cp = Specific heat at constant pressure, T2 – T1 = Rise in temperature, and R = Gas constant)  A. mR(T2 – T1)  B. mcv(T2 – T1)  C. mcp(T2 – T1)  D. mcp(T2 + T1)

Last Answer : Answer: B

Description : The two specific heats of gases are related by : (1) Cp + Cv = RJ (2) Cp –Cv = R/J (3) Cp – Cv = RJ (4) Cp /Cv = R

Last Answer :  Cp –Cv = R/J

Description : Equal volumes of two monoatomic gases, A and B, at same temperature and pressure are mixed. The ratio of specific heats (Cp /Cv ) of the mixture will be (1) 1.67 (2) 0.83 (3) 1.50 (4) 3.3

Last Answer : (1) 1.67

Description : (1/V) (∂V/∂T)Pis the mathematical expression (A) Joule-Thomson co-efficient (B) Specific heat at constant pressure (Cp) (C) co-efficient of thermal expansion (D) Specific heat at constant volume (CV)

Last Answer : (C) co-efficient of thermal expansion

Description : (∂T/∂P)H is the mathematical expression for (A) Specific heat at constant pressure (Cp) (B) Specific heat at constant volume (Cv) (C) Joule-Thompson co-efficient (D) None of these

Last Answer : (C) Joule-Thompson co-efficient

Description : The value of specific heat at constant pressure (cp) is __________ that of at constant volume (cv).  A. less than  B. equal to  C. more than

Last Answer : Answer: C

Description : The ratio of specific heat at constant pressure (Cp) and specific heat at constant volume (cv) is  A. equal to one  B. less than one  C. greater than one  D. none of these

Last Answer : Answer: C

Description : An engine working on air standard Otto cycle has a cylinder diameter of 10 cm and stroke length of 15 cm. The ratio of specific heats for air is 1.4. If the clearance volume is 196.3 cc and the heat supplied per kg of air per ... kg of air is a. 879.1 kJ/ b. 890.2 kJ c. 895.3 kJ d. 973.5 kJ

Last Answer : ANSWER d. 973.5 kJ

Description : y = specific heat ratio of an ideal gas is equal to (A) Cp/Cv (B) Cp/(CP-R) (C) 1 + (R/CV) (D) All (A), (B) and (C)

Last Answer : D) All (A), (B) and (C)

Description : One kg of gas occupying 0.1m^3 at pressure of 14 bar is expanded at constant pressure to 0.2m^3. Determine an initial and final temperature of gas. Take Cp=1.008KJ/KgK, Cv =0.72KJ/KgK.

Last Answer : V1=0.1m^3 V2=0.2 m^3 P1=P2=14 bar Cp=1.008 KJ/KgK Cv=0.72 KJ/KgK R=Cp-Cv R=1.008-0.72 R=0.288KJ/KgK Characteristic gas equation,  P1V1=mRT1 14*10^5*0.1=1*288*T1 T1=486.11K For constant pressure process, V1/T1=V2/T2 0.1/486.11=0.2/T2 T2=972.22K

Description : A perfect gas has a value of R= 319.2 J/ kf.K and k= 1.26. If 120 kJ are added to 2.27 kf\g of this gas at constant pressure when the initial temp is 32.2°C? Find T2.  a. 339.4 K  b. 449.4 K  c. 559.4K  d. 669.4K formula: cp = kR/ k-1 Q= mcp(T2-T1)

Last Answer : 339.4 K

Description : An ideal air standard Otto cycle has a compression ratio of 8.5. If the ratio of the specific heats is 1.4, then what is thermal efficiency (in percentage) of the Otto cycle? a. 57.5% b. 45.7% c. 52.5% d. 95%

Last Answer : ANSWER a. 57.5%

Description : The efficiency of the Otto cycle is independent of a. Heat supplied b. Compression ratio c. Ratio of specific heats d. None of the above

Last Answer : Answer a. Heat supplied

Description : Characteristic gas constant of a gas is equal to  (a) C/Cv  (b) Cv/Cp  (c) Cp – Cv  (d) Cp + Cv  (e) Cp x Cv

Last Answer : Answer : c

Description : Universal gas constant is defined as equal to product of the molecular weight of the gas and  (a) specific heat at constant pressure  (b) specific heat at constant volume  (c) ratio of two specific heats  (d) gas constant  (e) unity.

Last Answer : Answer : d

Description : An ideal gas whose specific heats are constant is called _____.  A. Perfect gas  B. Natural gas  C. Artificial gas  D. Refined gas

Last Answer : Perfect gas

Description : Cp- Cv = R is valid for __________ gases. (A) Ideal (B) Very high pressure (C) Very low temperature (D) All of the above

Last Answer : (A) Ideal

Description : For a constant pressure reversible process, the enthalpy change (ΔH) of the system is (A) Cv.dT (B) Cp.dT (C) ∫ Cp.dT (D) ∫ Cv.dT

Last Answer : (C) ∫ Cp.dT

Description : The equation, Cp- Cv = R, is true for __________ gas. (A) No (B) Any real (C) Only ideal (D) Both (B) and (C)

Last Answer : (C) Only ideal

Description : The gas constant is equal to  a. Cp – Cv  b. Cp + Cv  c. Cp – Cv + k  d. None of the above

Last Answer : Cp – Cv

Description : The gas constant (R) is equal to the __________ of two specific heats.  A. sum  B. difference  C. product  D. ratio

Last Answer : Answer: B

Description : An ideal gas is heated at constant volume and then expanded isothermally. Show processes on P-V & T-S diagrams.

Last Answer : Process 1-2 : Constant volume process Process 2-3 : Constant temperature process (Isothermal process)

Description : The internal energy of a gas obeying P (V - b) RT (where, b is a positive constant and has a constant Cv ), depends upon its (A) Pressure (B) Volume (C) Temperature (D) All (A), (B) & (C)

Last Answer : (C) Temperature

Description : Cp /Cv is termed as (A) Adiabatic constant (B) Mach number (C) Weber number (D) Prandtl number

Last Answer : (A) Adiabatic constan

Description : PVγ = Constant (where, γ = Cp/Cv) is valid for a/an __________ process. (A) Isothermal (B) Isentropic (C) Isobaric (D) Adiabatic

Last Answer : (D) Adiabatic

Description : In the equation, PVn = constant, if the value of n is in between 1 and y (i.e. Cp/Cv), then it represents a reversible __________ process. (A) Isometric (B) Polytropic (C) Isentropic (D) Isobaric

Last Answer : (B) Polytropic

Description : In the equation PVn = constant, if the value of n = y = Cp/Cv, then it represents a reversible __________ process. (A) Isothermal (B) Adiabatic (C) Isentropic (D) Polytropic

Last Answer : (C) Isentropic

Description : The value of Cp & Cv respectively for monatomic gases in Kcal/kg Mole.°K are (A) 5 & 3 (B) 3.987 & 1.987 (C) 1.987 & 0.66 (D) 0.66 & 1.987

Last Answer : A) 5 & 3

Description : The value of y = cp/cv. at < 500°C for air & most common gases can be safely assumed to be (A) 0.8 (B) 1 (C) 1.4 (D) 1.8

Last Answer : Option C

Description : In a P-V diagram (for an ideal gas), an isothermal curve will coincide within adiabatic curve (through a point), when (A) Cp < Cv (B) Cp = Cv (C) Cp > Cv (D) C ≥ Cv

Last Answer : (B) Cp = Cv

Description : On a P-V diagram of an ideal gas, suppose a reversible adiabatic line intersects a reversible isothermal line at point A. Then at a point A, the slope of the reversible adiabatic line (∂P/∂V)s and the slope of the reversible isothermal line ... Y (C) (∂P/∂V)S = y(∂P/∂V)T (D) (∂P/∂V)S = 1/y(∂P/∂V)T

Last Answer : (C) (∂P/∂V)S = y(∂P/∂V)T

Description : Air enters an adiabatic compressor at 300K. The exit temperature for a compression ratio of 3, assuming air to be an ideal gas (Y = Cp/Cv = 7/5) and the process to be reversible, is (A) 300 × (32/7) (B) 300 × (33/5) (C) 300 × (333/7) (D) 300 × (35/7)

Last Answer : A) 300 × (32/7)

Description : General gas equation is  (a) PV=nRT  (b) PV=mRT  (d) PV = C  (c) PV=KiRT  (e) Cp-Cv = Wj

Last Answer : Answer : b

Description : Clapeyron equation is a relation between (a) temperature, pressure and enthalpy (b) specific volume and enthalpy (c) temperature and enthalpy (d) temperature, pressure, specific vapour and enthalpy.

Last Answer : Ans: D

Description : The specific volume of air is expressed as the volume of: a. 1 kg of air at 101.325 kPa in cm3 b. 0.833 kg of air at standard pressure and temperature in m3 c. 1 kg of air at 101.325 ... d. 1 g of air occupied at any temperature and pressure e. 1 kg of air, regardless of temperature and pressure

Last Answer : Answer: C

Description : Represent constant volume process on PV & TS diagram for steam.

Last Answer : Represent constant volume process on PV & TS diagram for steam.

Description : The air standard Otto cycle comprises a two constant pressure processes and two constant volume processes b two constant pressure and two constant entropy processes c. two constant volume processes and two constant entropy processes d. none of the above.

Last Answer : ANSWER (c) two constant volume processes and two constant entropy processes

Description : A certain gas, with cp = 0.529Btu/ lb. °Rand R = 96.2ft.lb/lb. °R, expands from 5 cu ft and 80°F to 15 cu ft while the pressure remains constant at 15.5psia. Compute for T2.  a.1520°R  b. 1620°R  c. 1720°R  d. 1820°R formula: T2= T1V2/V1

Last Answer : 1620°R

Description : A certain gas with cp = 0.529Btu/lb°R and R = 96.2ft/lbºR expands from 5 ft and 80ºF to 15 ft while the pressure remains constant at 15.5 psia.  a. T2=1.620ºR, ∫H = 122.83 Btu  b. T2 = 2°R, ∫H = 122.83 Btu  c. ... , ∫H = 122.83 Btu  d. T2 = 1°R, ∫H = 122.83 Btu T2= V2(t2)/V1 and ∫H = mcp (T2-T1)

Last Answer : T2=1.620ºR, ∫H = 122.83 Btu

Description : A certain gas, with cp = 0.529Btu/lb.°R and R = 96.2 ft.lb/lb.°R, expands from 5 cu ft and 80°F to 15 cu ft while the pressure remains constant at 15.5 psia. Compute for T2. (Formula: T2= T1V2/V1)  a. 460°R  b. 270°R  c. 1620 °R  d. None of the above

Last Answer : 1620 °R

Description : According to Avogadro's Hypothesis  (a) the molecular weights of all the perfect gases occupy the same volume under same conditions of pressure and temperature  (b) the sum of partial pressure of ... gases have two values of specific heat  (e) all systems can be regarded as closed systems.

Last Answer : Answer : a

Description : Air standard cycle uses ____ as a working medium. a. Perfect gas b. Real gas c. Ideal gas d. Natural gas

Last Answer : ANSWER a. Perfect gas

Description : Give relation between Cp and Cv.

Last Answer : Ans. Cp – Cv = R

Description : If the molar heat capacities (Cp or Cv) of the reactants and products of a chemical reaction are identical, then, with the increase in temperature, the heat of reaction will (A) Increase (B) Decrease (C) Remain unaltered (D) Increase or decrease; depends on the particular reaction

Last Answer : (C) Remain unaltered

Description : In case of compression of one kg of air, the work done will be the least, when the value of polytropic index 'n' is (A) 1 (B) 1.4 (C) 1.5 (D) Y = Cp/Cv

Last Answer : A) 1

Description : If the performance of diesel engine of different sizes, cylinder dimensions and power rating are to be compared, which of the following parameters can be used for such comparison? (a) Swept volume (b) Air fuel ratio (c) Specific brake fuel consumption (d) Volumetric efficiency

Last Answer : Ans :c

Description : For an engine operating on air standard Otto cycle, the clearance volume is 10% of the swept volume. The specific heat ratio of air is 1.4. The air standard cycle efficiency is a. 38.3 % b. 39.8 % c. 60.2 % d. 61.7 %

Last Answer : ANSWER d. 61.7%