If S, L and R are the arc length, long chord and radius of the sliding circle then the perpendicular
distance of the line of the resultant cohesive force, is given by
(A) a = S.R/L
(B) a = L.S/R
(C) a = L.R/S
(D) None of these

1 Answer

Answer :

(A) a = S.R/L

Related questions

Description : If the perpendicular bisector of a chord AB of a circle PXAQBY intersects the circle at P and Q, then prove that arc PXA ≅ arc PYB. -Maths 9th

Last Answer : Solution :- Let AB be a chord of a circle having centre at O. Let PQ be the perpendicular bisector of the chord AB intersect it say at M. Perpendicular bisector of the chord passes through the centre of the circle,i. ... = PM (Common) ∴ △APM ≅ △BPM (SAS) PA = PB (CPCT) Hence, arc PXA ≅ arc PYB

Description : If the perpendicular bisector of a chord AB of a circle PXAQBY intersects the circle at P and Q, prove that arc PXA = arc PYB. -Maths 9th

Last Answer : Let AB be a chord of a circle having centre at OPQ be the perpendicular bisector of the chord AB, which intersects at M and it always passes through O. To prove arc PXA ≅ arc PYB Construction Join AP and BP. Proof In ... ΔBPM, AM = MB ∠PMA = ∠PMB PM = PM ∴ ΔAPM s ΔBPM ∴PA = PB ⇒arc PXA ≅ arc PYB

Description : If the perpendicular bisector of a chord AB of a circle PXAQBY intersects the circle at P and Q, prove that arc PXA = arc PYB. -Maths 9th

Last Answer : Let AB be a chord of a circle having centre at OPQ be the perpendicular bisector of the chord AB, which intersects at M and it always passes through O. To prove arc PXA ≅ arc PYB Construction Join AP and BP. Proof In ... ΔBPM, AM = MB ∠PMA = ∠PMB PM = PM ∴ ΔAPM s ΔBPM ∴PA = PB ⇒arc PXA ≅ arc PYB

Description : Draw a circle with centre at point O and radius 5 cm. Draw its chord AB, draw the perpendicular bisector of line segment AB. Does it pass through the centre of the circle? -Maths 9th

Last Answer : STEP1: Draw a circle with centre at point O and radius 5 cm. STEP2: Draw its cord AB. STEP3: With centre A as centre and radius more than half of AB, draw two arcs, one on each side ... is perpendicular bisector of AB which is chord of circle, Hence, it passes through the centre of the circle.

Description : The radius of a circle is 10cm. The length of a chord is 12 cm. Then the distance of the chord from the centre is `"__________________"`.

Last Answer : The radius of a circle is 10cm. The length of a chord is 12 cm. Then the distance of the chord from the centre is `"__________________"`.

Description : Designation of a curve is made by:  (A) Angle subtended by a chord of any length  (B) Angle subtended by an arc of specified length  (C) Radius of the curve  (D) Curvature of the curve 

Last Answer : (C) Radius of the curve 

Description : The given figure shows a circle with centre O in which a diameter AB bisects the chord PQ at the point R. If PR = RQ = 8 cm and RB = 4 cm, then find the radius of the circle. -Maths 9th

Last Answer : Let r be the radius, then OQ = OB = r and OR = (r - 4) ∴ OQ2 = OR2 + RO2 ⇒ r2 = 64 + (r-4)2 ⇒ r2 = 64 + r2 + 16 - 8r ⇒ 8r = 80 ⇒ r = 10 cm

Description : The given figure shows a circle with centre O in which a diameter AB bisects the chord PQ at the point R. If PR = RQ = 8 cm and RB = 4 cm, then find the radius of the circle. -Maths 9th

Last Answer : Let r be the radius, then OQ = OB = r and OR = (r - 4) ∴ OQ2 = OR2 + RO2 ⇒ r2 = 64 + (r-4)2 ⇒ r2 = 64 + r2 + 16 - 8r ⇒ 8r = 80 ⇒ r = 10 cm

Description : A chord of a circle of radius 7.5 cm with centre 0 is of length 9 cm. Find its distance from the centre. -Maths 9th

Last Answer : ∵ PM = MQ = 1/2 = PQ = 45 cm and OP = 7.5 cm In right angled ΔOMP, using phthagoras theorem OM2 = OP2 - PM2 ⇒OM2 = 7.52 - 4.52 ⇒OM2 = 56.25 - 20.25 ⇒OM2 = 36 ∴ OM = √36 = 6 cm

Description : A chord of a circle of radius 7.5 cm with centre 0 is of length 9 cm. Find its distance from the centre. -Maths 9th

Last Answer : ∵ PM = MQ = 1/2 = PQ = 45 cm and OP = 7.5 cm In right angled ΔOMP, using phthagoras theorem OM2 = OP2 - PM2 ⇒OM2 = 7.52 - 4.52 ⇒OM2 = 56.25 - 20.25 ⇒OM2 = 36 ∴ OM = √36 = 6 cm

Description : Find the length of a chord which is at a distance of 12 cm from the centre of a circle of radius 13 cm. -Maths 9th

Last Answer : Let AB be a chord of circle with centre O and radius 13cm. Draw OM perpendicular AB and join OA. In the right triangle OMA, we have OA2 = OM2 + AM2 ⇒ 132 = 122 + AM2 ⇒ AM2 = 169 - 144 ... . As the perpendicular from the centre of a chord bisects the chord.Therefore, AB = 2AM = 2 x 5 = 10cm.

Description : The radius of a circle is 13 cm and the length of one of its chords is 24 cm. Find the distance of the chord from the centre. -Maths 9th

Last Answer : Let PQ be a chord of a circle with centre O and radius 13cm such that PQ = 24cm. From O, draw OM perpendicular PQ and join OP. As, the perpendicular from the centre of a circle to a chord bisects the chord. ∴ PM ... Hence, the distance of the chord from the centre is 5cm.

Description : If a given line is tangent to the circle then perpendicular distance from centre of the circle is equal to radius of the circle solve the following :

Last Answer : If a given line is tangent to the circle then perpendicular distance from centre of the circle is equal to radius of the ... D. `x^(2)+y^(2)+6x+1=0`

Description : If a given line is tangent to the circle then perpendicular distance from centre of the circle is equal to radius of the circle solve the following :

Last Answer : If a given line is tangent to the circle then perpendicular distance from centre of the circle is equal to radius of the ... 0` D. `x^(2)+y^(2)-8y=0`

Description : If is the length of a sub-chord and is the radius of simple curve, the angle of deflection  between its tangent and sub-chord, in minutes, is equal to  (A) 573 S/R (B) 573 R/S (C) 1718.9 R/S (D) 1718.9 S/R

Last Answer : (D) 1718.9 S/R

Description : If the long chord and tangent length of a circular curve of radius R are equal the angle of deflection, is (A) 30° (B) 60° (C) 90° (D) 120°

Last Answer : D

Description : If the radius of a simple curve is R, the length of the chord for calculating offsets by the method of  chords produced, should not exceed.  (A) R/10  (B) R/15  (C) R/20  (D) R/25 

Last Answer : (C) R/20 

Description : If D is the degree of the curve of radius R, the exact length of its specified chord, is (A) Radius of the curve sine of half the degree (B) Diameter of the curve sine of half the ... Diameter of the curve cosine of half the degree (D) Diameter of the curve tangent of half the degree

Last Answer : (B) Diameter of the curve × sine of half the degree

Description : The difference in the lengths of an arc and its subtended chord on the earth surface for a distance of 18.2 km, is only (A) 1 cm (B) 5 cm (C) 10 cm (D) 100 cm

Last Answer : (C) 10 cm

Description : Top chord of a truss is continuous over joints l apart. Effective lengths of the member in the plane perpendicular to the truss is (a) 0.7 l (b) 0.85 l (c ) l (d) 1.5 l

Last Answer : (c ) l

Description : A circle has radius √2 cm. It is divided into two segments by a chord of length 2cm.Prove that the angle subtended by the chord at a point in major segment is 45 degree . -Maths 9th

Last Answer : Given radius =2 cm Therefore AO=2 cm Let OD be the perpendicular from O on AB And AB =2cm Therefore AD=1cm (perpendicular from the centre bisects the chord) Now in triangle AOD, AO=2 cm ... by a chord at the centre is double of the angle made by the chord at any poin on the circumference)

Description : Point A(5, 1) is the centre of the circle with radius 13 units. AB ⊥ chord PQ. B is (2, –3). The length of chord PQ is -Maths 9th

Last Answer : (c) ParallelogramAB = \(\sqrt{(4-7)^2+(5-6)^2}\) = \(\sqrt{9+1}\) = \(\sqrt{10}\)BC = \(\sqrt{(7-4)^2+(6-3)^2}\) = \(\sqrt{9+9}\) = \(3\sqrt2\)CD =\(\sqrt{(4-1)^2+(3-2) ... = \(2\sqrt{13}\)AB = CD, BC = AD and AC ≠ BD ⇒ opposite sides are equal and diagonals are not equal. ⇒ ABCD is a parallelogram.

Description : If harmonic motion of same frequency and same phase are superimposed in two perpendicular directions ( x and y) then, the resultant motion will be, A) circle B) An ellipse C) An square D) An rectangle

Last Answer : C) An square

Description : The distance between two stations M and N is L kilometers. All frames are K bits long. The propagation delay per kilometer is t seconds. Let R bits/second be the channel capacity. Assuming that processing ... maximum utilization, when the sliding window protocol used is: a. A b. B c. C d. D

Last Answer : c. C

Description : The beds which have a gentle upstream dip will be_______ to the resultant force (R), hence can provides the best resistance to withstand the stresses or loads acting in the area. (A) Parallel (B) Perpendicular (C) None of these 

Last Answer : (B) Perpendicular  

Description : What is the relationship between chord of a circle and a perpendicular to it from the centre? -Maths 9th

Last Answer : Solution :- Perpendicular line from the centre bisect the chord.

Description : PS is the chord of the circle with centre O. A perpendicular is drawn from centre O of the circle to chord PS at M. If `bar(PS) =30 cm` and `bar(OM) =

Last Answer : PS is the chord of the circle with centre O. A perpendicular is drawn from centre O of the circle to ... =8 cm`, then find the radius of the circle.

Description : If the radius of a simple curve is 600 m, the maximum length of the chord for calculating offsets, is  taken  (A) 15 m  (B) 20 m  (C) 25 m  (D) 30 m

Last Answer : (D) 30 m

Description : The radius of a simple circular curve is 300 m and length of its specified chord is 30 m. The degree of the curve is (A) 5.73° (B) 5.37° (C) 3.57° (D) 3.75°

Last Answer : (A) 5.73°

Description : AD is a diameter of a circle and AB is a chord. If AD = 34 cm, AB = 30 cm, then find the distance of AB from the centre of the circle. -Maths 9th

Last Answer : ∵ The perpendicular drawn from the centre to the chord bisects it. ∴ AM = 1/2 AB = 1/2 × 30 cm = 15 cm Also, OA = 1/2 AD = 1/2 × 34 cm = 17 cm In rt. △OAM, we have OA2 = OM2 + AM2 172 = OM2 + 152 ⇒ 289 = OM2 + 225 ⇒ OM2 = 289 - 225 ⇒ OM2 = 64 ⇒ OM = √64 = 8 cm

Description : AD is a diameter of a circle and AB is a chord. If AD = 34 cm, AB = 30 cm, then find the distance of AB from the centre of the circle. -Maths 9th

Last Answer : ∵ The perpendicular drawn from the centre to the chord bisects it. ∴ AM = 1/2 AB = 1/2 × 30 cm = 15 cm Also, OA = 1/2 AD = 1/2 × 34 cm = 17 cm In rt. △OAM, we have OA2 = OM2 + AM2 172 = OM2 + 152 ⇒ 289 = OM2 + 225 ⇒ OM2 = 289 - 225 ⇒ OM2 = 64 ⇒ OM = √64 = 8 cm

Description : In a purely cohesive soil, the critical centre lies at the intersection of (A) Perpendicular bisector of slope and the locus of the centre (B) Perpendicular drawn at 1/3rd slope from toe and the ... C) Perpendicular drawn at 2/3rd slope from toe and the locus of the centre (D) Directional angles

Last Answer : Answer: Option D

Description : In a circle of radius 14 cm, an arc subtends an angle of 45 O at the centre, then the area of the sector is (a) 71 cm 2(b) 76 cm 2 (c) 77 cm 2 (d) 154 cm 2

Last Answer : (c) 77 cm 2

Description : A chord of a circle is equal to its radius. Find the angle subtended by this chord at a point in major segment. -Maths 9th

Last Answer : Given, AB is a chord of a circle, which is equal to the radius of the circle, i.e., AB = BO …(i) Join OA, AC and BC. Since, OA = OB= Radius of circle OA = AS = BO

Description : A chord of a circle is equal to its radius. Find the angle subtended by this chord at a point in major segment. -Maths 9th

Last Answer : Given, AB is a chord of a circle, which is equal to the radius of the circle, i.e., AB = BO …(i) Join OA, AC and BC. Since, OA = OB= Radius of circle OA = AS = BO

Description : A chord of a circle of radius 20 cm subtends an angle of 90° at the centre. Find the area of the corresponding major segment of the circle. -Maths 10th

Last Answer : Area of the minor segment = { pi × 90 /360 - sin 45 × cos 45 } × r × r ={ 3.14 ×1/4 - 1÷√2 ×1÷√2 } × 20 × 20 = { 3.14 ... Area of major segment = area of circle - area of minor segment = 1256 - 114 = 1142 HOPE IT HELPS YOU

Description : In the figure below, CD is a chord of the semi circle with centre O. OA is the radius of the circle. If `CD=10` cm, `AB=2` cm and `bar(OA)_|_bar(CD)`

Last Answer : In the figure below, CD is a chord of the semi circle with centre O. OA is the radius of the ... |_bar(CD)` the length of OB is `"_____________"`

Description : Design of R.C.C. simply supported beams carrying U.D.L. is based on the resultant B.M. at (A) Supports (B) Mid span (C) Every section (D) Quarter span

Last Answer : Answer: Option B

Description : If R is the radius of a main curve and L is the length of the transition curve, the shift of the curve, is (A) L/24 R (B) L2 /24 R (C) L3 /24 R (D) L4 /24 R

Last Answer : Answer: Option B

Description : If L is the length of a moving vehicle and R is the radius of curve, the extra mechanical width b to be provided on horizontal curves, (A) L/R (B) L/2R (C) L²/2R (D) L/3R

Last Answer : Answer: Option C

Description : If AB = 12 cm, BC = 16 cm and AB is perpendicular to BC, then the radius of the circle passing through the points A, B and C is -Maths 9th

Last Answer : According to question the radius of the circle passing through the points A, B and C .

Description : If AB = 12 cm, BC = 16 cm and AB is perpendicular to BC, then the radius of the circle passing through the points A, B and C is -Maths 9th

Last Answer : According to question the radius of the circle passing through the points A, B and C .

Description : If degree of a road curve is defined by assuming the standard length of an arc as 30 metres, the radius of 1° curve is equal (A) 1719 m (B) 1146 m (C) 1046 m (D) 1619 m

Last Answer : Answer: Option A

Description : A force of 60 N acting perpendicular to a force of 80 N, magnitude of resultant force is 

Last Answer : A force of 60 N acting perpendicular to a force of 80 N, magnitude of resultant force is (A) 20N (B) 70N (C) 100 N (D) 140 N

Description : The locus of the end point of the resultant of the normal and tangential components of the stress  on an inclined plane, is  (A) Circle  (B) Parabola  (C) Ellipse  (D) Straight line 

Last Answer : (C) Ellipse 

Description : AD is a diameter of a circle and AB is a chord. If AD = 34 cm, AB = 30 cm, the distance of AB from the centre of the circle is -Maths 9th

Last Answer : (d) Given, AD = 34 cm and AB = 30 cm In figure, draw OL ⊥ AB. Since, the perpendicular from the centre of a circle to a chord bisects the chord.

Description : AD is a diameter of a circle and AB is a chord. If AD = 34 cm, AB = 30 cm, the distance of AB from the centre of the circle is -Maths 9th

Last Answer : (d) Given, AD = 34 cm and AB = 30 cm In figure, draw OL ⊥ AB. Since, the perpendicular from the centre of a circle to a chord bisects the chord.

Description : The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at a distance of 4 cm from the centre, what is the distance of other chord from the centre? -Maths 9th

Last Answer : There are two parallel chords of length 8 cm and 6 cm. The distance between center and shortest chord (6cm chord) is 4cm. So, the perpendicular distance from the center to the shortest chord is 4cm. The ... 32+42 =5. Since the radius is 5. The distance from center to largest chord is 52−42 =3.

Description : A circle with centre O and diameter COB is given. If AB and CD are parallel, then show that chord AC is equal to chord BD. -Maths 9th

Last Answer : O Join AC and BD. Given, COB is the diameter of circle. ∠CAB = ∠BDC = 90° [angle in a semi-circle] Also, AB II CD ∠ABC = ∠DCB (alternate angles] Now, ∠ACB = 90° - ∠ABC and ∠DBC = 90° - ∠DCB = ... = ∠DBC BC = BC [common sides] ΔABC = ΔDCB [by ASA congruency] ∴ AC = BD [by CPCT] Hence Proved.

Description : A circle with centre O and diameter COB is given. If AB and CD are parallel, then show that chord AC is equal to chord BD. -Maths 9th

Last Answer : O Join AC and BD. Given, COB is the diameter of circle. ∠CAB = ∠BDC = 90° [angle in a semi-circle] Also, AB II CD ∠ABC = ∠DCB (alternate angles] Now, ∠ACB = 90° - ∠ABC and ∠DBC = 90° - ∠DCB = ... = ∠DBC BC = BC [common sides] ΔABC = ΔDCB [by ASA congruency] ∴ AC = BD [by CPCT] Hence Proved.