Define isothermal and Adiabatic process.

1 Answer

Answer :

Isothermal process:- The process in which volume of a gas changes keeping its temperature constant is called isothermal change. 

Adiabatic process:- The process in which volume of a gas changes with change in temperature is called Adiabatic change. 

Related questions

Description : In a single stage reciprocating air compressor, the work done on air to compressor is from suction pressure to delivery pressure will be minimum when the compression is A. Isothermal process B. Adiabatic process C. Polytropic process D. Constant pressure process.

Last Answer : ANSWER : A

Description : A cycle tyre bursts suddenly. This represents an – (1) Isothermal process (2) Adiabatic process (3) Isochoric process (4) Isoboric process

Last Answer : (2) Adiabatic process Explanation: When a tyre bursts suddenly energy is not immediately transferred between the system and the surrounding. So the process is adiabatic. There sudden expansion of its air ... tyre is cooled. In adiabatic process, heat neither enters the system nor leaves the system.

Description : Blowing Air with open pipe is an example of – (1) isothermal process (2) isochroric process (3) Isobaric process (4) Adiabatic process

Last Answer : (3) Isobaric process Explanation: When air is suddenly exhaled out into a larger volume through the narrow opening, air undergo adiabatic expansion. So blowing air is an adiabatic process. But since it is open pipe, the pressure inside and pressure outside remains same.

Description : When a gas in a vessel expands, its internal energy decreases. The process involved is (A) Reversible (B) Irreversible (C) Isothermal (D) Adiabatic

Last Answer : (A) Reversible

Description : In polytropic process (PV n = constant), if n = 1; it means a/an __________ process. (A) Adiabatic (B) Reversible (C) Isothermal (D) None of these

Last Answer : (C) Isothermal

Description : Change of state namely evaporation condensation, freezing and melting is an __________ process. (A) Isothermal (B) Adiabatic (C) Isobaric (D) Isochoric

Last Answer : (A) Isothermal

Description : PVγ = Constant (where, γ = Cp/Cv) is valid for a/an __________ process. (A) Isothermal (B) Isentropic (C) Isobaric (D) Adiabatic

Last Answer : (D) Adiabatic

Description : PVy = constant, holds good for an isentropic process, which is (A) Reversible and isothermal (B) Isothermal and irreversible (C) Reversible and adiabatic (D) Adiabatic and irreversible

Last Answer : C) Reversible and adiabatic

Description : In the equation, PVn = constant, if the value of n = ± ∞, then it represents a reversible __________ process. (A) Adiabatic (B) Isometric (C) Isentropic (D) Isothermal

Last Answer : (B) Isometric

Description : In case of an __________ process, the temperature of the system increases. (A) Isothermal compression (B) Isothermal expansion (C) Adiabatic expansion (D) Adiabatic compression

Last Answer : (D) Adiabatic compression

Description : Heating of water under atmospheric pressure is an __________ process. (A) Isochoric (B) Isobaric (C) Adiabatic (D) Isothermal

Last Answer : (B) Isobaric

Description : The expression for the work done for a reversible polytropic process can be used to obtain the expression for work done for all processes, except reversible __________ process. (A) Isobaric (B) Isothermal (C) Adiabatic (D) None of these

Last Answer : (B) Isothermal

Description : Melting of ice is an example of an __________ process. (A) Adiabatic (B) Isothermal (C) Isometric (D) None of these

Last Answer : (B) Isothermal

Description : In the equation PVn = constant, if the value of n = y = Cp/Cv, then it represents a reversible __________ process. (A) Isothermal (B) Adiabatic (C) Isentropic (D) Polytropic

Last Answer : (C) Isentropic

Description : In the equation, PVn = constant, if the value of n = 1, then it represents a reversible __________ process. (A) Isothermal (B) Isobaric (C) Polytropic (D) Adiabatic

Last Answer : (A) Isothermal

Description : Which of the following non-flow reversible compression processes require maximum work? (A) Adiabatic process (B) Isothermal process (C) Isobaric process (D) All require same work

Last Answer : (A) Adiabatic process

Description : An approximately __________ process exemplifies the flow of a gas through a very long pipe of uniform cross-section. (A) Adiabatic (B) Isothermal (C) Isentropic (D) Isochoric

Last Answer : (B) Isothermal

Description : Work done by a/an __________ process is determined by ∫p. dv (A) Adiabatic (B) Quasi-static (C) Isothermal (D) Isentropic

Last Answer : (B) Quasi-static

Description : A thermodynamic process in which entropy is conserved  a. isentropic  b. adiabatic  c. isothermal  d. polytropic

Last Answer : isentropic

Description : When the expansion of compression of gas takes place without transfer of heat to or from the gas the process is called  a. reversible  b. adiabatic  c. polytropic  d. isothermal

Last Answer : adiabatic

Description : When the expansion of compression of gas takes place without transfer of heat or from the gas the process is called;  a. Isometric process  b. Isothermal process  c. Isobaric process  d. Adiabatic process

Last Answer : Adiabatic process

Description : Another name of reversible adiabatic process  a. Isentropic Process  b. Isometric Process  c. Isobaric Process  d. Isothermal Process

Last Answer : Isentropic Process

Description : A process, in which the temperature of the working substance remains constant during its expansion or compression, is called  A. isothermal process  B. hyperbolic process  C. adiabatic process  D. polytropic process

Last Answer : Answer: A

Description : If the value of n = 0 in the equation pvn = C, then the process is called  A. constant volume process  B. adiabatic process  C. constant pressure process  D. isothermal process

Last Answer : Answer: C

Description : Which of the following processes is irreversible process  (a) isothermal  (b) adiabatic  (c) throttling  (d) all of the above  (e) none of the above.

Last Answer : Answer : c

Description : The value of n = 1 in the polytropic process indicates it to be  (a) reversible process  (b) isothermal process  (c) adiabatic process  (d) irreversible process  (e) free expansion process.

Last Answer : Answer : b

Description : A cycle tyre bursts suddenly. This represents an : (1) Isothermal process (2) Adiabatic process (3) Isochoric process (4) Isoboric process

Last Answer : Adiabatic process

Description : Blowing Air with open pipe is an example of : (1) Isothermal process (2) Isochroric process (3) Isobaric process (4) Adiabatic process

Last Answer : Isobaric process 

Description : Represent Isobaric, Isochoric, Isothermal, Adiabatic process on P-V and T-S diagram.

Last Answer : Isobaric process Isothermal process Isochoric process Adiabatic process:

Description : The propagation of sound waves in a gas involves – (1) Adiabatic compression and rarefaction (2) Isothermal compression and rarefaction (3) Isochoric compression and rarefaction (4) Isobaric compression and rarefaction

Last Answer : (1) Adiabatic compression and rarefaction Explanation: Sound is a mechanical wave that is an oscillation of pressure transmitted through a solid, liquid, or gas, composed of frequencies within the ... . Through solids, however, it can be transmitted as both longitudinal waves and transverse waves.

Description : The propagation of sound waves in a gas involves – (1) Adiabatic compression and rarefaction (2) Isothermal compression and rarefaction (3) Isochoric compression and rarefaction (4) Isobaric compression and rarefaction

Last Answer : (1) Adiabatic compression and rarefaction Explanation: Sound is a mechanical wave that is an oscillation of pressure transmitted through a solid, liquid, or gas, composed of frequencies within ... is transmitted through gases, plasma, and liquids as longitudinal waves, also called compression waves.

Description : The energy equation, E + (p/ρ) + (V 2 /2g) + gZ = constant (E = internal energy/mass), is applicable to (A) Perfect gases only (B) Isothermal flow of gases (C) Adiabatic unsteady flow of gases (D) All compressible fluids

Last Answer : (D) All compressible fluids

Description : In a/an __________ reactor, there is exchange of heat with the surroundings with sizeable temperature variation. (A) Adiabatic (B) Isothermal (C) Non-adiabatic (D) None of these

Last Answer : (C) Non-adiabatic

Description : In a P-V diagram (for an ideal gas), an isothermal curve will coincide within adiabatic curve (through a point), when (A) Cp < Cv (B) Cp = Cv (C) Cp > Cv (D) C ≥ Cv

Last Answer : (B) Cp = Cv

Description : The difference between isothermal compressibility and adiabatic compressibility for an ideal gas is (A) 0 (B) +ve (C) -ve (D) ∞

Last Answer : (B) +ve

Description : The ammonia synthesis reaction represented by N2 + 3H2 ⇌ 2NH3; ΔH = - 22.4 kcal, is (A) Endothermic (B) Exothermic (C) Isothermal (D) Adiabatic

Last Answer : (B) Exothermic

Description : Entropy of a substance remains constant during a/an __________ change. (A) Reversible isothermal (B) Irreversible isothermal (C) Reversible adiabatic (D) None of these

Last Answer : (C) Reversible adiabatic

Description : The expression, nRT ln(P1/P2), is for the __________of an ideal gas. (A) Compressibility (B) Work done under adiabatic condition (C) Work done under isothermal condition (D) Co-efficient of thermal expansion

Last Answer : C) Work done under isothermal condition

Description : Generation of heat by friction is an example of a/an __________ change. (A) Isothermal (B) Irreversible (C) Adiabatic (D) Reversible

Last Answer : (B) Irreversible

Description : On a P-V diagram of an ideal gas, suppose a reversible adiabatic line intersects a reversible isothermal line at point A. Then at a point A, the slope of the reversible adiabatic line (∂P/∂V)s and the slope of the reversible isothermal line ... Y (C) (∂P/∂V)S = y(∂P/∂V)T (D) (∂P/∂V)S = 1/y(∂P/∂V)T

Last Answer : (C) (∂P/∂V)S = y(∂P/∂V)T

Description : Maximum work that could be secured by expanding the gas over a given pressure range is the __________ work. (A) Isothermal (B) Adiabatic (C) Isentropic (D) None of these

Last Answer : (A) Isothermal

Description : The work done in isothermal compression compared to that in adiabatic compression will be (A) Less (B) More (C) Same (D) More or less depending upon the extent of work done

Last Answer : (B) More

Description : he gas law (PV = RT) is true for an __________ change. (A) Isothermal (B) Adiabatic (C) Both (A) & (B) (D) Neither (A) nor (B)

Last Answer : (C) Both (A) & (B)

Description : What is the ratio of adiabatic compressibility to isothermal compressibility? (A) 1 (B) < 1 (C) > 1 (D) >> 1

Last Answer : (B) < 1

Description : Occurring at fixed temperature  a. isentropic  b. Adiabatic  c. Isothermal  d. polytropic

Last Answer : Isothermal

Description : One for which no heat is gained or lost  a. Isentropic  b. Adiabatic  c. Isothermal  d. Polytropic

Last Answer : Adiabatic

Description : Which of the following engines is the most efficient?  a. Isobaric expansion  b. Adiabatic compression  c. Adiabatic expansion  d. Isothermal expansion

Last Answer : Isobaric expansion

Description : The Carnot cycle is composed of ______ processes.  A. One isothermal and one adiabatic  B. One isothermal and two adiabatic  C. Two isothermal and one adiabatic  D. Two isothermal and two adiabatic

Last Answer : Two isothermal and two adiabatic