Let the opposite angular points of a square be (3, 4) and (1, – 1), Find the co-ordinates of the remaining angular points. -Maths 9th

1 Answer

Answer :

P ≡ (–3, 2), Q ≡ (–5, –5), R ≡ (2, –3), S ≡ (4, 4)∴ PQ = \(\sqrt{(-5+3)^2+(-5-2)^2}\) = \(\sqrt{4+49}\) = \(\sqrt{53}\)QR = \(\sqrt{(2+5)^2+(-3+5)^2}\) = \(\sqrt{49+4}\) = \(\sqrt{53}\)RS = \(\sqrt{(4-2)^2+(4+3)^2}\) = \(\sqrt{4+49}\) = \(\sqrt{53}\)PS = \(\sqrt{(4+3)^2+(4-2)^2}\) = \(\sqrt{49+4}\) = \(\sqrt{53}\)∵ PQ = QR = RS = PS, therefore PQRS is a rhombus. For PQRS to be a square, diagonals PR and QS should be equal.PR = \(\sqrt{(2+3)^2+(-3-2)^2}\) = \(\sqrt{25+25}\) = \(\sqrt{50}\) = \(5\sqrt2\)QS = \(\sqrt{(4+5)^2+(4+5)^2}\) = \(\sqrt{81+81}\) = \(\sqrt{162}\) = \(9\sqrt2\)As PR ≠ QS, so PQRS is not a square.Area of rhombus = \(rac{1}{2}\) x (Product of length of diagonals) = \(rac{1}{2}\) x \(5\sqrt2\) x \(9\sqrt2\) = 45 sq. units.

Related questions

Description : Draw the graph of the equation 3x + 4y = 12 and find the co-ordinates of the points of intersection of the equation with the co-ordinate axes. -Maths 9th

Last Answer : Solution :-

Description : Find the co-ordinates of the points on the x-axis which are at a distance of 10 units from the point (– 4, 8)? -Maths 9th

Last Answer : (a) Internal division: If P(x, y) divides the line segment formed by the joining of the points A (x1, y1) and B (x2, y2) internally in the ratio m1 : m2. Then\(x=rac{m_1x_2+m_2x_1}{m_1+m_2}\) and \(y=rac ... : 1, the co-ordinates of the mid-point are \(\bigg(rac{x_1+x_2}{2},rac{y_1+y_2}{2}\bigg)\).

Description : The co-ordinates of mid-points of sides of a triangle are (1, 2), (0, –1) and (2, –1). Find its centroid. -Maths 9th

Last Answer : ABCD is a parallelogram, if the mid-points of diagonals AC and BD have the same co-ordinates (∵ Diagonals of a parallelogram bisect each other)Co-ordinates of mid-point of AC are \(\bigg(rac{a+2}{2},rac{-11+15}{2}\bigg)\) = \(\bigg(rac ... \(rac{a+2}{2}\) = 3 and 2 = \(rac{b+1}{2}\) ⇒ a = 4, b = 3.

Description : If the co-ordinates of the mid-points of the sides of a triangle are (1, 1), (2, –3), (3, 4), find its incentre. -Maths 9th

Last Answer : (b) 3 : 2 ; m = \(-rac{2}{5}\)Let P(m, 6) divides AB in the ratio k : 1. Then co-ordinates of P are \(\bigg(\)\(rac{2k-4}{k+1}\), \(rac{8k+3}{k+1}\)\(\bigg)\)Given, co-ordinates of P are (m, 6) ⇒\(rac{2k-4}{k+1} ... 2}-4}{rac{3}{2}+1}\) = \(rac{3-4}{rac{5}{2}}\) = \(rac{-2}{5}\)∴ m = \(rac{-2}{5}\).

Description : If the points with the co-ordinates {a, ma}, {b, (m + 1)b}, {c, (m + 2)c} are collinear, then which of the following is correct ? -Maths 9th

Last Answer : (d) (7, -2)Let the co-ordinates of R be (x, y). As can be easily seen, it is a point of external division Also, PR = 2QR⇒ R divides the join of P and Q externally in the ratio 2:1. ∴ x = \(rac{2 imes2-1 imes-3}{2-1}\), ... }{2-1}\)⇒ x = 4 + 3 = 7 and y = 2 - 4 = -2. ∴ Co-ordinates of R are (7, -2).

Description : What do you mean by Co-ordinates (Abscissa and Ordinate)? Explain with figure. -Maths 9th

Last Answer : Co-ordinate Geometry is that branch of geometry in which two numbers, called co-ordinates are used to indicate the position of a point in a plane and which make use of algebraic methods in the study of geometric figures.

Description : Distance Formula for co-ordinates: -Maths 9th

Last Answer : The position of each point of the plane is determined with reference to the rectangular axes by means of a pair of numbers called co-ordinates which are distances of the point from the respective axes. The distance of the ... are (x, 0) and the co-ordinates of any point of the y-axis are (0, y)

Description : Section formula for co-ordinates: -Maths 9th

Last Answer : The co-ordinate axes separate the plane into four regions called the quadrants. By custom the quadrants are numbered I, II, III, IV, in the counter clockwise direction as shown in the figure. (i) For distances along the x- ... +)X′OY′3rd quadrantx < 0, y < 0(-, -)XOY′4th quadrantx > 0, y < 0(+, -)

Description : Find the co-ordinates of the circumcentre of the triangle whose vertices are (3, 0), (–1, –6) and (4, –1). Also find its circum-radius. -Maths 9th

Last Answer : Let A ≡ (2, - 2), B ≡ (-2, 1), C ≡ (5, 2 ). Then,AB = \(\sqrt{(-2-2)^2+(1+2)^2}\) = \(\sqrt{16+9}\) = \(\sqrt{25}\) = 5BC = \(\sqrt{(5+2)^2+(2-1)^2}\) = \(\sqrt{49+1}\) = \(\sqrt{50}\) = \( ... of ΔABC = \(rac{1}{2}\) x base x height = \(rac{1}{2}\) x AB x AC = \(rac{1}{2}\)x 5 x 5 = 12.5 sq. units.

Description : In the adjoining figure, P and Q have co-ordinates (4, 6)and (0, 3) respectively. Find (i) the co-ordinates of R (ii) Area of quadrilateral OAPQ. -Maths 9th

Last Answer : Let the line 2x + 3y - 30 = 0 divide the join of A(3, 4) and B(7, 8) at point C(p, q) in the ratio k : 1. Then,p = \(rac{7k+3}{k+1}\), q = \(rac{8k+4}{k+1}\)As the point C lies on the line 2x + 3y - 30 ... {3}{2}+1},rac{8 imesrac{3}{2}+4}{rac{3}{2}+1}\bigg)\) = \(\big(rac{27}{5},rac{32}{5}\big)\).

Description : Find the co-ordinates of the in-centre of the triangle whose vertices are (–36, 7), (20, 7) and (0, –8). -Maths 9th

Last Answer : Let A(1, 2), B(0, -1) and C(2, -1) be the mid-points of the sides PQ, QR and RP of the triangle PQR. Let the co-ordinates of P, Q and R be (x1, y1), (x2, y2) and (x3 , y3) respectively. Then, by the mid- ... ordinates of centroid of ΔPQR = \(\bigg(rac{3+(-1)+1}{3},rac{2+2+(-4)}{3}\bigg)\) = (1, 0).

Description : (–2, –1) and (4, –5) are the co-ordinates of vertices B and D respectively of rhombus ABCD. Find the equation of the diagonal AC. -Maths 9th

Last Answer : 3\(x\) - 2y + 5 = 0 ⇒ -2y = -3\(x\) - 5 ⇒ y = \(rac{3}{2}\)\(x\) + \(rac{5}{2}\)On comparing with y = m\(x\) + c, we see that slope of given line = \(rac{3}{2}\)As the required line is perpendicular to the given line, ... - 4)⇒ 3(y - 5) = - 2\(x\) + 8 ⇒ 3y - 15 = -2\(x\) + 8 ⇒ 3y + 2\(x\) - 23 = 0

Description : The line x – 4y = 6 is the perpendicular bisector of the segment AB and the co-ordinates of B are (1, 3). Find the co-ordinates of A. -Maths 9th

Last Answer : Co-ordinates of A are \(\bigg(rac{3 imes9+1 imes5}{3+1},rac{3 imes6+1 imes-2}{3+1}\bigg)\) = \(\bigg(rac{32}{4},rac{16}{4}\bigg)\), i.e. (8, 4)Now, \(x\) - 3y + 4 = 0 ⇒ -3y = -\(x\) - 4 ⇒ y = \(rac{x}{3}+rac{4} ... 8) [Using, y - y1 = m (x - x1)]⇒ 3y - 12 = \(x\) - 8 ⇒ 3y - \(x\) = 4.

Description : What is the equation of the straight line passing through the point (4, 3) and making intercepts on the co-ordinates axes whose sum is –1 ? -Maths 9th

Last Answer : Diagonals of a rhombus bisect each other at right angles ⇒ Co-ordinates of mid-points of AC and BD are equal∴ 0 = \(\bigg(rac{4+(-2)}{2},rac{-5+(-1)}{2}\bigg)\) = (1, -3)Slope of BD = \(rac{-5+1}{4+2}\) = \(rac{-4}{6}\) ... (rac{3}{2}\) isy + 3 = \(rac{3}{2}\) (x - 1)⇒ 2y + 6 = 3x - 3 ⇒ 2y = 3x - 9.

Description : If A(3, 5), B(– 5, – 4), C(7, 10) are the vertices of a parallelogram taken in order, then the co-ordinates of the fourth vertex are: -Maths 9th

Last Answer : (c) RhombusCo-ordinates of P are \(\bigg(rac{-1-1}{2},rac{-1+4}{2}\bigg)\)i.e, \(\big(-1,rac{3}{2}\big)\)Co-ordinates of Q are \(\bigg(rac{-1+5}{2},rac{4+4}{2}\bigg)\)i.e, (2, 4)Co-ordinates of R ... \sqrt{(2-2)^2+(4+1)^2}\) = \(\sqrt{25}\) = 5⇒ PR ≠ SQ ⇒ Diagonals are not equal ⇒ PQRS is a rhombus.

Description : What are the co-ordinates of the foot of the perpendicular from the point (2, 3) on the line x + y – 11 = 0 ? -Maths 9th

Last Answer : (d) 2x + 9y + 7 = 0PS being the median of ΔPQR, S is the mid-point of QR, i.e., Coordinates of S ≡ \(\bigg(rac{6+7}{2},rac{-1+3}{2}\bigg)\) = \(\bigg(rac{13}{2},1\bigg)\)Slope of line parallel to PS = Slope of PS= \(rac{1 ... y + 1) = \(rac{-2}{9}\)(x - 1), i.e., 9y + 9 = - 2x + 2 ⇒ 2x + 9y + 7 = 0.

Description : The co-ordinates of P and Q are (–3, 4) and (2, 1) respectively. -Maths 9th

Last Answer : (b) \(rac{\pi}{4}\)\(x\) cos θ + y sin θ = 2 ⇒ y sin θ = 2 - \(x\) cos θ ⇒ y = - \(x\) cot θ + 2 ⇒ Slope of this line = - cot θ Also, given \(x\) - y = 3 ⇒ y = \(x\) + 3 ⇒ Slope of this ... lines are perpendicular, - cot θ x 1 = -1⇒ cot θ = 1 ⇒ cot θ = cot \(rac{\pi}{4}\) ⇒ θ = \(rac{\pi}{4}\)

Description : For drawing a frequency polygon of a continuous frequency distribution, we plot the points whose ordinates are the frequencies of the respective classes and abscissae are, respectively -Maths 9th

Last Answer : NEED ANSWER

Description : For drawing a frequency polygon of a continuous frequency distribution, we plot the points whose ordinates are the frequencies of the respective classes and abscissae are, respectively -Maths 9th

Last Answer : (c) Class marks i.e., the mid-point of the classes are abscissa of the points, which we plot for frequency polygon.

Description : Let P(–3, 2), Q(–5, –5), R(2, –3) and S(4, 4) be four points in a plane. Then show that PQRS is a rhombus. Is it a square ? -Maths 9th

Last Answer : Let P(1, -1), Q \(\big(rac{-1}{2},rac{1}{2}\big)\) and R(1,2) be the vertices of the ΔPQR.Then, PQ = \(\sqrt{\big(rac{-1}{2}-1\big)^2+\big(rac{1}{2}+1\big)^2}\) = \(\sqrt{rac{9}{4}+rac{9}{4}} ... {3\sqrt2}{2}\)PR = \(\sqrt{(1-1)^2+(2+1)^2}\) = \(\sqrt9\) = 3∵ PQ = QR, the triangle PQR is isosceles.

Description : A metallic sheet is of rectangular shape with dimensions 48 cm x 36 cm. From each of its corners, a square of 8 cm is cut-off and an open box is made of the remaining sheet. Find the volume of the box. -Maths 9th

Last Answer : When squares of 8 cm is cutt-off from rectangulare sheet then, Length of box (l) = (98 - 8 - 8) = 32 cm Breadth of box (b) = (36 - 8 - 8) = 20 cm Height of box (h) = 8cm ∴ Volume of box = lbh = 32 x 20 x 8 = 5120 cm3

Description : A metallic sheet is of rectangular shape with dimensions 48 cm x 36 cm. From each of its corners, a square of 8 cm is cut-off and an open box is made of the remaining sheet. Find the volume of the box. -Maths 9th

Last Answer : When squares of 8 cm is cutt-off from rectangulare sheet then, Length of box (l) = (98 - 8 - 8) = 32 cm Breadth of box (b) = (36 - 8 - 8) = 20 cm Height of box (h) = 8cm ∴ Volume of box = lbh = 32 x 20 x 8 = 5120 cm3

Description : If the area of the quadrilateral whose angular points A, B, C, D taken in order are (1, 2), (–5, 6), (7, – 4) and (–2, k) be zero, -Maths 9th

Last Answer : (d) 1 : 16Gvien \(rac{AD}{AB}=rac{1}{4}\) ⇒ \(rac{AD}{DB}=rac{1}{3}\),i.e., D divides AB internally in the ratio 1 : 3. ∴ Co-odinates of D are\(\bigg(rac{1+12}{1+3},rac{5+18}{1+3}\bigg)\)i.e.,\(\ ... {Area of}\,\Delta{ADE}}{ ext{Area of}\,\Delta{ABC}}\) = \(rac{rac{15}{32}}{rac{15}{2}}\) = 1 : 16.

Description : If two opposite sides of a cyclic quadrilateral are parallel , then prove that - (a) remaining two sides are equal (b) both the diagonals are equal -Maths 9th

Last Answer : Let ABCD be quadrilateral with ab||cd Join be. In triangle abd and CBD, Angle abd=angle cdb(alternate angles) Anglecbd=angle adb(alternate angles) Bd=bd(common) Abd=~CBD by asa test Ad=BC by cpct Since ad ... c(from 1) Ad =bc(proved above) Triangle adc=~bcd by sas test Ac=bd by cpct Hence proved

Description : If two opposite sides of a cyclic quadrilateral are parallel , then prove that - (a) remaining two sides are equal (b) both the diagonals are equal -Maths 9th

Last Answer : Let ABCD be quadrilateral with ab||cd Join be. In triangle abd and CBD, Angle abd=angle cdb(alternate angles) Anglecbd=angle adb(alternate angles) Bd=bd(common) Abd=~CBD by asa test Ad=BC by cpct Since ad ... c(from 1) Ad =bc(proved above) Triangle adc=~bcd by sas test Ac=bd by cpct Hence proved

Description : Let R be the rectangular window against which the lines are to be clipped using 2D Sutherland-Cohen line clipping algorithm. The rectangular window has lower left-hand corner at (-5,1) and upper righthand corner at (3,7). ... s) is/are candidate for clipping? (A) AB (B) CD (C) EF (D) AB and CD

Last Answer : (D) AB and CD

Description : (i) Find the co-ordinates of the points on the curve xy = 16 at which the normal drawn meet at origin. (ii) Find the points on the curve`4x^(2)+9 y^(2

Last Answer : (i) Find the co-ordinates of the points on the curve xy = 16 at which the normal drawn meet at ... ` at which the normal drawn is parallel to X-axis.

Description : Let X be any point within a square ABCD. On AX a square AXYZ is described such that D is within it. Which one of the following is correct? -Maths 9th

Last Answer : answer:

Description : Let A = {(2, 5, 11)}, B = {3, 6, 10} and R be a relation from A to B defined by R = {(a, b) : a and b are co-prime}. Then R is -Maths 9th

Last Answer : (c) {(2, 3), (5, 3), (5, 6), (11, 3), (11, 6), (11, 10)}

Description : Let O be any point inside a triangle ABC. Let L, M and N be the points on AB, BC and CA respectively, -Maths 9th

Last Answer : answer:

Description : Let ABC be a triangle. Let D, E, F be points respectively on segments BC, CA, AB such that AD, BE and CF concur at point K. -Maths 9th

Last Answer : answer:

Description : Let ABCD be a quadrilateral. Let X and Y be the mid-points of AC and BD respectively and the lines through X and Y respectively -Maths 9th

Last Answer : answer:

Description : In the given figure, equal chords AB and CD of a circle with centre O cut at right angles at E. If M and N are the mid-points of AB and CD respectively, prove that OMEN is a square. -Maths 9th

Last Answer : Join OE. In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN, ... =ON , ME = NE and ∠OME = ∠ONE = ∠MEN = ∠MON = 90° Hence, OMEN is a square. Hence proved.

Description : ABCD is a square. E and F are respectively the mid - points of BC and CD. If R is the mid point of EF. -Maths 9th

Last Answer : Since R is the mid point of EF . ∴ AR is the median in △AEF. As, a median of a triangle divides it into two triangles of equal area . ∴ ar(△AER) = ar(△AFR)

Description : In the given figure, ABCD is a square. Side AB is produced to points P and Q in such a way that PA = AB = BQ. Prove that DQ = CP. -Maths 9th

Last Answer : In △PAD, ∠A = 90° and DA = PA = PB ⇒ ∠ADP = ∠APD = 90° / 2 = 45° Similarly, in △QBC, ∠B = 90° and BQ = BC = AB ⇒∠BCQ = ∠BQC = 90° / 2 = 45° In △PAD and △QBC , we have PA = QB [given] ∠A = ... [each = 90° + 45° = 135°] ⇒ △PDC = △QCD [by SAS congruence rule] ⇒ PC = QD or DQ = CP

Description : Plot the points P(1, 0), Q(4, 0) and 5(1, 3). Find the coordinates of the point R such that PQRS is a square. -Maths 9th

Last Answer : see the below answer

Description : Points A(5, 3), B(-2, 3) and 0(5, – 4) are three vertices of a square ABCD. -Maths 9th

Last Answer : The graph obtained by plotting the points A, B and C and D is given below. Take a point C on the graph such that ABCD is a square i.e., all sides AB, BC, CD, and AD are equal. So, abscissa of C should be ... of C should be equal to ordinate of D i.e., -4. Hence, the coordinates of C are (-2, - 4).

Description : The figure formed by joining the mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only, if -Maths 9th

Last Answer : According to question mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : ABCD is a square. E and F are respectively the mid-points of BC and CD. -Maths 9th

Last Answer : According to question prove that ar (ΔAER) = ar (ΔAFR).

Description : In the given figure, equal chords AB and CD of a circle with centre O cut at right angles at E. If M and N are the mid-points of AB and CD respectively, prove that OMEN is a square. -Maths 9th

Last Answer : Join OE. In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN, ... =ON , ME = NE and ∠OME = ∠ONE = ∠MEN = ∠MON = 90° Hence, OMEN is a square. Hence proved.

Description : ABCD is a square. E and F are respectively the mid - points of BC and CD. If R is the mid point of EF. -Maths 9th

Last Answer : Since R is the mid point of EF . ∴ AR is the median in △AEF. As, a median of a triangle divides it into two triangles of equal area . ∴ ar(△AER) = ar(△AFR)

Description : In the given figure, ABCD is a square. Side AB is produced to points P and Q in such a way that PA = AB = BQ. Prove that DQ = CP. -Maths 9th

Last Answer : In △PAD, ∠A = 90° and DA = PA = PB ⇒ ∠ADP = ∠APD = 90° / 2 = 45° Similarly, in △QBC, ∠B = 90° and BQ = BC = AB ⇒∠BCQ = ∠BQC = 90° / 2 = 45° In △PAD and △QBC , we have PA = QB [given] ∠A = ... [each = 90° + 45° = 135°] ⇒ △PDC = △QCD [by SAS congruence rule] ⇒ PC = QD or DQ = CP

Description : Points A(5, 3), B(-2, 3) and 0(5, – 4) are three vertices of a square ABCD. -Maths 9th

Last Answer : The graph obtained by plotting the points A, B and C and D is given below. Take a point C on the graph such that ABCD is a square i.e., all sides AB, BC, CD, and AD are equal. So, abscissa of C should be ... of C should be equal to ordinate of D i.e., -4. Hence, the coordinates of C are (-2, - 4).

Description : Plot the points P(1, 0), Q(4, 0) and 5(1, 3). Find the coordinates of the point R such that PQRS is a square. -Maths 9th

Last Answer : see the below answer

Description : The figure formed by joining the mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only, if -Maths 9th

Last Answer : According to question mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : ABCD is a square. E and F are respectively the mid-points of BC and CD. -Maths 9th

Last Answer : According to question prove that ar (ΔAER) = ar (ΔAFR).

Description : Find the area of an equilateral triangle inscribed in a circle circumscribed by a square made by joining the mid-points -Maths 9th

Last Answer : (d) \(rac{3\sqrt3a^2}{32}\)Let AB = a be the side of the outermost square.Then AG = AH = \(rac{a}{2}\)⇒ GH = \(\sqrt{rac{a^2}{4}+rac{a^2}{4}}\) = \(rac{a}{\sqrt2}\)∴ Diameter of circle = \(rac{a} ... rac{\sqrt3}{2}\) = \(rac{\sqrt3a^2}{32}\)∴ Area of ΔPQR = 3 (Area of ΔPOQ) = \(rac{\sqrt3a^2}{32}\)