5 atm = ____mmHg
 a. 8300
 b. 3800
 c. 3080
 d. None of the above

1 Answer

Answer :

3800

Related questions

Description : A cylinder contains oxygen at a pressure of 10 atm and a temperature of 300 K. The volume of the cylinder is 10 liters. What is the mass of the oxygen in grams? Molecular weight (MW) of oxygen is 32 g/mole?  a. 125.02  b. 130.08  c. 135.05  d. 120.04

Last Answer : 130.08 {(10atm)(10)(32)/(0.0821) (300K)}

Description : The standard reference atmospheric pressure  a. 760 mmHg  b. 1 atm  c. 14.696 psia  d. All of the above

Last Answer : All of the above

Description : The temperature at which the vapor pressure exactly equals one atm is called _________.  a. boiling temperature  b. normal boiling point  c. triple point  d. point of infliction

Last Answer : normal boiling point

Description : Which is NOT a correct statement?  A. A superheated vapor will not condense when small amount of heat re removed  B. An ideal gas is a gas that is not a superheated vapor  C. A saturated ... absorb as much heat as it can without vaporizing  D. Water at 1 atm and room temperature is subcooled

Last Answer : An ideal gas is a gas that is not a superheated vapor

Description : What is the latent heat of vaporization of water at 1 atm?  A. 2314.8 kJ/kg  B. 2257.1 kJ/kg  C. 2511.7 kJ/kg  D. 2429.8 kJ/kg

Last Answer : 2257.1 kJ/kg

Description : What is the latent heat of fusion of water at 1 atm?  A. 331.1 kJ/kg  B. 332.6 kJ/kg  C. 333.7 kJ/kg  D. 330.7 kJ/kg

Last Answer : 333.7 kJ/kg

Description : 1 atm is equivalent to how many pascals?  A. 101,325  B. 101,689  C. 101,102  D. 101,812

Last Answer : 101,325

Description : What is the SI unit of pressure?  A. Atm  B. Bar  C. Pa  D. Psi

Last Answer : Pa

Description : Which of the following is NOT a value of the standard atmospheric pressure?  A. 1 bar  B. 1 atm  C. 1 kgf/cm^2  D. 14.223 psi

Last Answer : 14.223 psi

Description : Which of the following compressibility factor of ideal gas  a. 1  b. 2  c. 1.5  d. 0

Last Answer : 1

Description : What is the formula to convert °F to °C?  a) °C = °F + 273  b) °C = 5/9 (°F - 32)  c) °C = 9/5 (°F)+32  d) None of the above

Last Answer : °C = 5/9 (°F - 32)

Description : What is the formula to convert °C to °F?  a) °F = °C + 273  b) °F = 5/9 (°C - 32)  c) °F = 9/5 (°C)+32  d) None of the above

Last Answer : momentum

Description : The pressure gauge on a 2000 m³ tank of oxygen gas reads 600 kPa. How much volumes will the oxygen occupied at pressure of the outside air 100 kPa?  a) 14026.5 m³  b) 15026.5 m³  c) 13026.5 m³  d) 16026.5 m³ Formula: P1V1/T1 =P2V2/T2

Last Answer : 14026.5 m³

Description : A 1-kg steam-water mixture at 1.0 MPa is contained in an inflexible tank. Heat is added until the pressure rises to 3.5 MPa and the temperature to 400°. Determine the heat added.  a) 1378.7 kJ  b) 1348.5 kJ  c) 1278,7 kJ  d) 1246,5 kJ Formula: Q = (h2 – p2v2) –(h1 –p1v1)

Last Answer : 1378.7 kJ

Description : A certain gas, with cp = 0.529Btu/ lb. °Rand R = 96.2ft.lb/lb. °R, expands from 5 cu ft and 80°F to 15 cu ft while the pressure remains constant at 15.5psia. Compute for T2.  a.1520°R  b. 1620°R  c. 1720°R  d. 1820°R formula: T2= T1V2/V1

Last Answer : 1620°R

Description : The flow energy of 5 ft3 of a fluid passing a boundary to a system is 80,000 ft-lb. Determine the pressure at this point.  a. 222 psi  b. 333 psi  c. 444 psi  d. 111 psi formula: Ef= pV

Last Answer : 111 psi

Description : An ideal gas of volume 1liter and pressure 10 bar undergoes a quasistatic adiabatic expansion until the pressure drops to 1 bar. Assume γ to be 1.4 what is the final volume?  a. 3.18 l  b. 4.18 l  c. 5.18 l  d. 6.18 l

Last Answer : 5.18 l

Description : A car whose mass is 2 metric tons is accelerated uniformly from stand hill to 100 kmph in 5 sec. Find the driving force in Newton’s.  a. 11,120 N  b. 11,320 N  c. 11,420 N  d. 11520 N formula: F= ma / k

Last Answer : 11,120N

Description : A certain fluid is flowing in a 0.5m x 0.3 channel at the rate of 3 m/s and has a specific volume of 0.012 m³/kg. Determined the mass of water flowing in kg/s.  a. 267 kg/s  b. 378 kg/s  c. 375 kg/s  d. 456.5 kg/s m = Aν/V

Last Answer : 375 kg/s

Description : Water is flowing through a 1 foot diameter pipe at the rate of 10ft/sec. What is the volume flow rate of water in ft³/sec?  a. 7.85  b. 6.85  c. 8.85  d. 5.85 V = Aν

Last Answer : 7.85

Description : A 600kg hammer of a pile driver is lilted 2m the pilling head. What is the change of potential energy? If the hammer is realest. What will be its velocity and the instant if it sticks the pilling?  a. 10,772 N-m and 5.26m/s ...  c. 11,772 N-m and 6.26m/s  d. 11,77 2N-m and5.26m/s ∫PE = mgo(∫Z)/gc

Last Answer : 11,772 N-m and 6.26m/s

Description : A certain gas with cp = 0.529Btu/lb°R and R = 96.2ft/lbºR expands from 5 ft and 80ºF to 15 ft while the pressure remains constant at 15.5 psia.  a. T2=1.620ºR, ∫H = 122.83 Btu  b. T2 = 2°R, ∫H = 122.83 Btu  c. ... , ∫H = 122.83 Btu  d. T2 = 1°R, ∫H = 122.83 Btu T2= V2(t2)/V1 and ∫H = mcp (T2-T1)

Last Answer : T2=1.620ºR, ∫H = 122.83 Btu

Description : A certain gas, with cp = 0.529Btu/lb.°R and R = 96.2 ft.lb/lb.°R, expands from 5 cu ft and 80°F to 15 cu ft while the pressure remains constant at 15.5 psia. Compute for T2. (Formula: T2= T1V2/V1)  a. 460°R  b. 270°R  c. 1620 °R  d. None of the above

Last Answer : 1620 °R

Description : There are 1.36 kg of gas, for which R = 377 J/kg.k and k = 1.25, that undergo a nonflow constant volume process from p1 = 551.6 kPa and t1 = 60°C to p2 = 1655 kPa. During the process the gas is internally stirred and ... (Formula: T2= T1p2/ p1)  a. 999 K  b. 888 K  c. 456 K  d. One of the above

Last Answer : 999 K

Description : Find the change in internal energy of 5 lb. of oxygen gas when the temperature changes from 100 ˚F to 120 ˚F. CV = 0.157 BTU/lbm-˚R  A.14.7 BTU  B.15.7 BTU  C. 16.8 BTU  D. 15.9 BTU Formula: U= mcv T

Last Answer : 15.7 BTU

Description : A 10m^3 vessel initially contains 5 m^3 of liquid water and 5 m^3 of saturated water vapor at 100 kPa. Calculate the internal energy of the system using the steam table.  A. 5 x10^5 kJ  B. 8x10^5 kJ  C. 1 ... 3 kJ/kg ug= 2506kJ/kg formula: Mvap = V vap/vg M liq = Vliq/ vƒ u =uƒM liq + ug M vap

Last Answer : 2 x10^6 kJ

Description : Steam at 1000 lbf/ft^2 pressure and 300˚R has specific volume of 6.5 ft^3/lbm and a specific enthalpy of 9800 lbf-ft/lbm. Find the internal energy per pound mass of steam.  A.2500 lbf-ft/lbm  B.3300 lbf-ft/lbm  C.5400 lbf-ft/lbm  D.6900 lbf-ft/lbm Formula: h= u+ pV u= h– pV

Last Answer : 3300 lbf-ft/lbm

Description : A gas is enclosed in a cylinder with a weighted piston as the top boundary. The gas is heated and expands from a volume of 0.04 m3 to 0.10 m3 at a constant pressure of 200 kPa. Find the work done on the system.  a. 5 kJ  b. 15 kJ  c. 10 kJ  d. 12 kJ

Last Answer : 12 kJ

Description : Twenty grams of ice at 0˚C melts to water at 0˚C. How much does the entropy of the 20g change in this process?  a. 30.5 J/K  b. 24.6 J/K  c. 21.3 J/K  d. 15.7 J/K

Last Answer : 24.6 J/K

Description : Roughly what is the total weight of air in the entire earth?  a. 1 x 10^5 tons  b. 2 x 10^6 tons  c. 6 x 10^15 tons  d. 8 x 10^10 tons

Last Answer : 6 x 10^15 tons

Description : How many kilocalories of heat are required to heat 750 g of water from 35˚C to 55˚C.  a. 15  b. 1500  c. 1.5 x 10^4  d. 6.3 x 10^4

Last Answer : 15

Description : The Carnot cycle is composed of how many reversible processes?  A. 2  B. 3  C. 4  D. 5

Last Answer : 4

Description : What is the absorptivity of a black body?  A. 0  B. 1  C. 0.5  D. 0.25

Last Answer : 1

Description : What is the emissivity of a black body?  A. 0  B. 1  C. 0.5  D. 0.25

Last Answer : 1

Description : One erg is equivalent to how many joules?  A. 10^-8  B. 10^-7  C. 10^-6  D. 10^-5

Last Answer : 10^-7

Description : 1 bar is equivalent to how many pascals?  A. 10^3  B. 10^4  C. 10^5  D. 10^6

Last Answer : 10^5

Description : The compression ratio for Diesel engines is  A. 3 to 6  B. 5 to 8  C. 15 to 20  D. 20 to 30

Last Answer : Answer: C

Description : When cut-off ratio is __________ the efficiency of Diesel cycle approaches to Otto cycle efficiency.  A. zero  B. 1/5  C. 4/5  D. 1

Last Answer : Answer: A

Description : The compression ratio for petrol engines is  A.3 to 6  B.5 to 8  C.15 to 20  D.20 to 30

Last Answer : Answer: B

Description : Which of the following laws of thermodynamic which leads to the definition of entropy?  a. First law  b. Second law  c. Third law  d. Law of conservation of energy

Last Answer : Second law

Description : It is used for gas turbines which operates on an open cycle where both the compression and expansion processes take place in rotating machinery.  a. Dual Cycle  b. Otto Cycle  c. Carnot Cycle  d. Brayton Cycle

Last Answer : Brayton Cycle

Description : The Science of Energy  a. Thermionics  b. Kinetics  c. Thermodynamics  d. Geophysics

Last Answer : Thermodynamics

Description : Which of the engine is used for fighter bombers?  a. Turbojet  b. Pulsejet  c. Rockets  d. Ramjet

Last Answer : Turbojet

Description : It is the unbalanced force developed in a turbo jet engine that is caused by the difference in the momentum of the low-velocity air entering the engine and the high velocity exhaust gases leaving the engine.  a. Fall  b. Lift  c. Drag  d. Thrust

Last Answer : Thrust

Description : Executes the entire cycle in just two strokes the power stroke and the compression stroke.  a. One-stroke engine  b. Two-stroke engine  c. Four-stroke engine  d. Eight-stroke engine

Last Answer : Two-stroke engine

Description : Energy can neither created nor destroyed. It can only change forms.  a. Conservation of Mass Principle  b. Conservation of Energy Principle  c. Conservation of Momentum Principle  d. Conservation of Heat Principle

Last Answer : Conservation of Energy Principle

Description : The rate at which this is quantity passes through a fixed boundary per unit time  a. Flux  b. Existence  c. Irradiance  d. All of these

Last Answer : All of these

Description : Diffusion due to thermal motion is called  a. dilation  b. infusion  c. effusion  d. dispersion

Last Answer : effusion

Description : It is a process during which the pressure remains constant  a. Adiabatic  b. Isentropic  c. Isobaric  d. Isotropic

Last Answer : Isobaric

Description : It is the deposition of radiant energy as heat into an absorbing body.  a. Radiation  b. Ionization  c. Convection  d. Insolation

Last Answer : Insolation