If V is the design speed in km/hour and R is the radius of the curve of a hill road, the super￾elevation
(A) e = V / 127 R
(B) e = V² / 127 R
(C) e = V ²/ 225 R
(D) e = V / 225 R

1 Answer

Answer :

Answer: Option C

Related questions

Description : If V is speed in km/hour and R is radius of the curve, the super-elevation e is equal to (A) V²/125 R (B) V²/225 R (C) V²/325 R

Last Answer : Answer: Option B

Description : Extra widening required at a horizontal curve on a single lane hill road of radius 80 m for a design speed of 50 km ph and for a vehicle with wheel base 6.0 m is (A) 0.225 m (B) 0.589 m (C) 1.250 m (D) None of these

Last Answer : Answer: Option B

Description : The correct formula for calculating super-elevation for the hill roads, is (A) e = V²/254 R (B) e = V²/225 R (C) e = V²/278 R (D) e = V²/114 R

Last Answer : Answer: Option B

Description : The total value of extra widening required at a horizontal curve on a two lane hill road of radius 42 m for a design speed of 50 kmph and for vehicles with wheel base 6 m, is (A) 0.500 m (B) 0.589 m (C) 1.089 m (D) 0.089 m

Last Answer : Answer: Option C

Description : If the coefficient of friction on the road surface is 0.15 and a maximum super-elevation 1 in 15 is provided, the maximum speed of the vehicles on a curve of 100 metre radius, is (A) 32.44 km/hour (B) 42.44 kg/hour (C) 52.44 km/hour (D) 62.44 km/hour

Last Answer : Answer: Option C

Description : A particle is moving in a uniform circular motion with constant speed v along a circle of radius r. The acceleration-of the particle is – (1) zero (2) V/r (3) V/r² (4) V²/r

Last Answer : (4) V²/r Explanation: When a particle is moving in a uniform circular motion with constant speed and radius. the acceleration of the particle is given by v2/r. The particle will exhibit centripetal acceleration.

Description : An object moving in a circle of radius ‘r’ with a constant speed ‘v’ has a constant acceleration towards the center equal to A. v²⁄r B. v⁄r C. v²×r D. v×r

Last Answer : v²⁄r

Description : A car is travelling at 90 km/hour on a rough road where the coefficient of friction between the road and the tyre is 0.5. The distance the car will skid before stopping when the brakes are jammed suddenly would be a.127.4 m b.95.55 m c.63.7 m d.31.85 m e.90 m

Last Answer : c. 63.7 m

Description : If is the speed of a locomotive in km per hour, g is the acceleration due to gravity, is the distance between running faces of the rails and is the radius of the circular curve, the required super elevation is (A) gV²/GR (B) Rg/GV² (C) GR/gV² (D) GV²/gR

Last Answer : (D) GV²/gR

Description : If the designed speed on a circular curve of radius 1400 m is 80 km/hour, no super-elevation is provided, if the camber, is (A) 4 % (B) 3 % (C) 2 % (D) 1.7 %

Last Answer : Answer: Option C

Description : A district road with a bituminous pavement has a horizontal curve of 1000 m for a design speed of 75 km ph. The super-elevation is (A) 1 in 40 (B) 1 in 50 (C) 1 in 60 (D) 1 in 70

Last Answer : Answer: Option A

Description : The safe stopping sight distance D, may be computed from the equation (A) D = 0.278 Vt + V²/254f (B) D = 0.254 Vt + V²/278f (C) D = 0.254 Vt + V²/225f (D) D = 0.225 Vt + V²/254f

Last Answer : Answer: Option A

Description : Minimum stopping distance for moving vehicles on road with a design speed of 80 km/hour, is (A) 80 m (B) 100 m (C) 120 m (D) 150 m

Last Answer : Answer: Option C

Description : Over taking time required for a vehicle with design speed 50 km ph and overtaking acceleration 1.25 m/sec2 to overtake a vehicle moving at a speed 30 km ph, is (A) 5.0 secs (B) 6.12 secs (C) 225.48 secs (D) 30 secs

Last Answer : Answer: Option B

Description : If V is the design speed of vehicles in km/hour, the change of radial acceleration in metres/sec3 , is (A) 65/(70 + V) (B) 60/(70 + V) (C) 70/(65 + V) (D) 70/(60 + V)

Last Answer : Answer: Option C

Description : If V is speed of a moving vehicle, r is radius of the curve, g is the acceleration due to gravity, W is the width of the carriageway, the super elevation is (A) WV/gr (B) W²V/gr (C) WV²/gr (D) WV/gr²

Last Answer : Answer: Option C

Description : The cross-section of a road partly in banking and partly in cutting is shown in the given figure. The area of the shaded portion is (A) b - rd)²/(r - s) (B) b - rd)²/(r + s) (C) ½ × (b + rd)²/(r - s) (D) b - rd)²/(s - r)

Last Answer : (A) b - rd)²/(r - s)

Description : The area of the cross-section of a road fully in banking shown in the given figure, is (A) [sb² + r² (2bd + sd)²]/(r² - s²) (B) [sb² + r² (2bd + sd)²]/(r² - s5 ) (C) [sb² + r² (2bd + sd)²]/(r - s) (D) None of these

Last Answer : (A) [sb² + r² (2bd + sd)²]/(r² - s²)

Description : If the radius of curvature of a hill road is 50 m, the percentage grade compensation should be (A) 60/R (B) 70/R (C) 75/R (D) 80/R

Last Answer : Answer: Option C

Description : If L is the length of vehicles in metres, C is the clear distance between two consecutive vehicles (stopping sight distance), V is the speed of vehicles in km/hour, the maximum number N of vehicles/hour, is (A) N = 1000 V / (L + C ... ) / 1000 V (C) N = 1000 L / (C + V) (D) N = 1000 C / (L + V)

Last Answer : Answer: Option A

Description : The absolute minimum radius of horizontal curve for a design speed 60 kmph is (A) 131 m (B) 210 m (C) 360 m (D) None of these

Last Answer : Answer: Option D

Description : If N is the algebraic difference of grades, S is the minimum sight distance in metres, the length (L) of a summit curve is (A) NS/4 (B) NS²/4 (C) N²S/4 (D) (NS)²/4

Last Answer : Answer: Option B

Description : Along a hill road, a side drain is provided on (A) Outer side of a spur curve (B) Outer side of a re-entrant curve (C) Outer side of both (a) and (b) (D) Inner side of both (a) and (b)

Last Answer : Answer: Option D

Description : The following is correct : (A) P = V x I (B) P = I ² x R (C) P = V ² / R (D) All of the above

Last Answer : The following is correct : (A) P = V x I (B) P = I ² x R (C) P = V ² / R (D) All of the above

Description : The loss of head at entrance in a pipe is (where v = Velocity of liquid in the pipe) (A) v²/2g (B) 0.5v²/2g (C) 0.375v²/2g (D) 0.75v²/2g

Last Answer : Answer: Option B

Description : The loss of head at exit of a pipe is (where v = Velocity of liquid in the pipe) (A) v²/2g (B) 0.5v²/2g (C) 0.375v²/2g (D) 0.75v²/2g

Last Answer : Answer: Option A

Description : If V is the velocity in kmph, t the stopping distance S of the vehicle, is (A) 0.28V²t + V/0.01 (B) 0.28Vt + V²/0.1 (C) 0.28Vt + 0.01 (D) 0.28Vt + 0.01 V²/

Last Answer : Answer: Option C

Description : A car travelling at a speed of 60 km/hour is braked and comes to rest 6 seconds after the brakes are applied. The minimum coefficient of driction between the wheels and the road would be a.0.107 b.0.3 c.0.283 d.0.417 e.0.5

Last Answer : c. 0.283

Description : If W is total load per unit area on a panel, D is the diameter of the column head, L is the span in two directions, then the sum of the maximum positive bending moment and average of the negative bending moment for the design of the span ... (L + 2D/3)² (C) WL/10 (L - 2D/3)² (D) WL/12 (L - D/3)²

Last Answer : Answer: Option C

Description : If the velocity of moving vehicles on a road is 24 km/per hour, stopping distance is 19 metres and average length of vehicles is 6 metres, the basic capacity of lane, is (A) 500 vehicles per hour (B) 700 vehicles per hour (C) 1000 vehicles per hour (D) 1250 vehicles per hour

Last Answer : Answer: Option C

Description : If the rate of gain of radial acceleration is 0.3 m per sec3 and full centrifugal ratio is developed. On the curve the ratio of the length of the transition curve of same radius on road and railway, is (A) 2.828 (B) 3.828 (C) 1.828 (D) 0.828

Last Answer : (A) 2.828

Description : If degree of a road curve is defined by assuming the standard length of an arc as 30 metres, the radius of 1° curve is equal (A) 1719 m (B) 1146 m (C) 1046 m (D) 1619 m

Last Answer : Answer: Option A

Description : A bus can travel 25% faster than a jeep. Both start from point P at the same time and reach point Q, 225 kms away from P, at the same time. On the way, however, the bus lost about 37.5 minutes while stopping at the ... is the speed of the jeep? a) 64 km/hr b) 72 km/hr c) 68 km/hr d) 56 km/hr

Last Answer : B Let speed of the jeep =x kmph Then, speed of the bus =(100+25)x/100 =125x/100 =5x/4 kmph Time taken by the jeep to travel from P to Q =225/x hours Time taken by the bus to travel from p to Q =225/(5x/4) + ... 225/x=900/5x+37.5/60 225/x=180/x+37.5/60 45/x =37.5/60 37.5x=45*60 X=72 km/hr

Description : For calculating the permissible stress 0 y /[(1 + a(l/r)²]is the empirical formula, known as  (A) Straight line formula  (B) Parabolic formula  (C) Perry's formula  (D) Rankine's formula 

Last Answer : (D) Rankine's formula 

Description : For calculating the allowable stress of long columns 0 y/n [1 - a (1/r)²]is the empirical formula,  known as  (A) Straight line formula  (B) Parabolic formula  (C) Perry's formula  (D) Rankine's formula 

Last Answer : (B) Parabolic formula 

Description : If the axial length of a drainage basin is 35 km and its form factor is 0.2, the total area of the basin is (A) 205 sq. km. (B) 215 sq. km. (C) 225 sq. km. (D) 245 sq. km.

Last Answer : Answer: Option D

Description : If A is the projected area of a vehicle in square metres, V is speed of the vehicles in kilometres per hour and C is a constant, then the wind resistance R to the moving vehicles, is given by (A) R = CAV (B) R = CAV2 (C) R = CAV3 (D) R = C 2AV

Last Answer : Answer: Option B

Description : Boyle's law states that A. pressure of a gas is inversely proportional to its volume i.e. P V = constant B. pressure of a gas is directly proportional to its volume i.e. P⁄V = constant C. ... of a gas is directly proportional to the square of its volume i.e. P ⁄ V² = constant

Last Answer : pressure of a gas is inversely proportional to its volume i.e. P × V = constant

Description : If C is basic capacity per lane, V is velocity in km/hour, S is stopping distance plus length of the vehicles in metres, the formula C = 1000V/S is applicable to (A) District roads (B) Two lane roads (C) Two lane roads in one direction (D) None of these

Last Answer : Answer: Option C

Description : Explain the types of hill road curve with neat sketch.

Last Answer : Types of curves provided on hill road are as follow:  (1) Hair pin bend curve: The curve in a hill road which changes its direction through an angle of 180o or so, down the hill on the ... moving traffic. At such curves, the parapet wall is provided only for safety of fast moving traffic.

Description : Van der Waals derived an expression for the pressure defect', if the observed pressure is denoted as p' and volume is denoted as V', the gas pressure in the bulk of the gas is equal to: A. p + ... a: constant for the particular gas D. p + (a V²); where a: constant for the particular gas

Last Answer : p + a/(V²); where a: constant for the particular gas

Description : If the radius of a simple curve is R, the length of the chord for calculating offsets by the method of  chords produced, should not exceed.  (A) R/10  (B) R/15  (C) R/20  (D) R/25 

Last Answer : (C) R/20 

Description : If is the length of a sub-chord and is the radius of simple curve, the angle of deflection  between its tangent and sub-chord, in minutes, is equal to  (A) 573 S/R (B) 573 R/S (C) 1718.9 R/S (D) 1718.9 S/R

Last Answer : (D) 1718.9 S/R

Description : If the long chord and tangent length of a circular curve of radius R are equal the angle of deflection, is (A) 30° (B) 60° (C) 90° (D) 120°

Last Answer : D

Description : If D is the degree of the curve of radius R, the exact length of its specified chord, is (A) Radius of the curve sine of half the degree (B) Diameter of the curve sine of half the ... Diameter of the curve cosine of half the degree (D) Diameter of the curve tangent of half the degree

Last Answer : (B) Diameter of the curve × sine of half the degree

Description : If R is the radius of a main curve and L is the length of the transition curve, the shift of the curve, is (A) L/24 R (B) L2 /24 R (C) L3 /24 R (D) L4 /24 R

Last Answer : Answer: Option B

Description : The tangent length of a simple circular curve of radius R (A) R tan (B) R tan (C) R sin (D) R sin

Last Answer : Answer: Option B

Description : If L is the length of a moving vehicle and R is the radius of curve, the extra mechanical width b to be provided on horizontal curves, (A) L/R (B) L/2R (C) L²/2R (D) L/3R

Last Answer : Answer: Option C

Description : The power dissipated in a resistance is given by? (1) V²/R (2) IV (3) All of these (4) I²R

Last Answer : (3) All of these Explanation: Any resistor in a circuit that has a voltage drop acrossit dissipates electrical power. This electrical power is converted into heat energy hence all resistors have a power rating.

Description : A boy sitting in a rail road car throws a ball straight up into the air. The ball will fall back into his hands when the rail road car is a.moving at constant velocity b.accelerating ... inclined plane, while another identical block B is released for free fall from the same height e.decelerating

Last Answer : a. moving at constant velocity